Loading…

Fresh Tea Leaf-Grading Detection: An Improved YOLOv8 Neural Network Model Utilizing Deep Learning

To facilitate the realization of automated tea picking and enhance the speed and accuracy of tea leaf grading detection, this study proposes an improved YOLOv8 network for fresh tea leaf grading recognition. This approach integrates a Hierarchical Vision Transformer using Shifted Windows to replace...

Full description

Saved in:
Bibliographic Details
Published in:Horticulturae 2024-12, Vol.10 (12), p.1347
Main Authors: Wang, Zejun, Xia, Yuxin, Wang, Houqiao, Liu, Xiaohui, Che, Raoqiong, Guo, Xiaoxue, Li, Hongxu, Zhang, Shihao, Wang, Baijuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c264t-c31c965639111ec48f40c1e7413c18ecb4c4dfeadf78e7b8ed19cc93b8095ea3
container_end_page
container_issue 12
container_start_page 1347
container_title Horticulturae
container_volume 10
creator Wang, Zejun
Xia, Yuxin
Wang, Houqiao
Liu, Xiaohui
Che, Raoqiong
Guo, Xiaoxue
Li, Hongxu
Zhang, Shihao
Wang, Baijuan
description To facilitate the realization of automated tea picking and enhance the speed and accuracy of tea leaf grading detection, this study proposes an improved YOLOv8 network for fresh tea leaf grading recognition. This approach integrates a Hierarchical Vision Transformer using Shifted Windows to replace segments of the original YOLOv8’s network architecture, thereby alleviating the computational load of dense image processing tasks and reducing computational expenses. The incorporation of an Efficient Multi-Scale Attention Module with Cross-Spatial Learning serves to attenuate the influence of irrelevant features in complex backgrounds, which in turn, elevates the model’s detection Precision. Additionally, the substitution of the loss function with SIoU facilitates a more rapid model convergence and a more precise pinpointing of defect locations. The empirical findings indicate that the enhanced YOLOv8 algorithm has achieved a marked improvement in metrics such as Precision, Recall, F1, and mAP, with increases of 3.39%, 0.86%, 2.20%, and 2.81% respectively, when juxtaposed with the original YOLOv8 model. Moreover, in external validations, the FPS enhancements over the original YOLOv8, YOLOv5, YOLOX, Faster RCNN, and SSD deep-learning models are 6.75 Hz, 10.84 Hz, 12.79 Hz, 28.24 Hz, and 21.57 Hz, respectively, and the mAP improvements in practical detection are 2.79%, 2.92%, 3.08%, 7.07%, and 3.84% respectively. The refined model not only ensures efficient and accurate tea-grading recognition but also boasts high recognition rates and swift detection capabilities, thereby establishing a foundation for the development of tea-picking robots and tea quality grading devices.
doi_str_mv 10.3390/horticulturae10121347
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_56cade4839424bb8b221cb69c4eab568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821830496</galeid><doaj_id>oai_doaj_org_article_56cade4839424bb8b221cb69c4eab568</doaj_id><sourcerecordid>A821830496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-c31c965639111ec48f40c1e7413c18ecb4c4dfeadf78e7b8ed19cc93b8095ea3</originalsourceid><addsrcrecordid>eNptkUuP0zAQxy0EEquyHwHJEucsfsWxuVULu1Qq9FIOnCxnMum6pHFx3F3Bp8chCHHgNA_N_zcvQl5zdiOlZW8fYsoBLkO-JI-cccGlap6RKyE5r5paqOf_-C_J9TQdGWOCKa0bcUX8XcLpge7R0y36vrpPvgvjgb7HjJBDHN_R9Ug3p3OKj9jRr7vt7tHQz1i6DcXkp5i-0U-xw4F-yWEIPxcxnmdcGkv0irzo_TDh9R-7Ivu7D_vbj9V2d7-5XW8rEFrlCiQHq2stLeccQZleMeDYKC6BG4RWgep69F3fGGxagx23AFa2htkavVyRzYLtoj-6cwonn3646IP7nYjp4Px8qQFdrcF3qIy0Sqi2Na0QHFptQaFva20K683CKlt_v-CU3TFe0limd5Irq6VpmCxVN0vVwRdoGPuYkwc_s08B4oh9KPm1EdxINqtWpF4EkOI0Jez_jsmZm5_p_vtM-QvsY5Vj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149638703</pqid></control><display><type>article</type><title>Fresh Tea Leaf-Grading Detection: An Improved YOLOv8 Neural Network Model Utilizing Deep Learning</title><source>ProQuest - Publicly Available Content Database</source><creator>Wang, Zejun ; Xia, Yuxin ; Wang, Houqiao ; Liu, Xiaohui ; Che, Raoqiong ; Guo, Xiaoxue ; Li, Hongxu ; Zhang, Shihao ; Wang, Baijuan</creator><creatorcontrib>Wang, Zejun ; Xia, Yuxin ; Wang, Houqiao ; Liu, Xiaohui ; Che, Raoqiong ; Guo, Xiaoxue ; Li, Hongxu ; Zhang, Shihao ; Wang, Baijuan</creatorcontrib><description>To facilitate the realization of automated tea picking and enhance the speed and accuracy of tea leaf grading detection, this study proposes an improved YOLOv8 network for fresh tea leaf grading recognition. This approach integrates a Hierarchical Vision Transformer using Shifted Windows to replace segments of the original YOLOv8’s network architecture, thereby alleviating the computational load of dense image processing tasks and reducing computational expenses. The incorporation of an Efficient Multi-Scale Attention Module with Cross-Spatial Learning serves to attenuate the influence of irrelevant features in complex backgrounds, which in turn, elevates the model’s detection Precision. Additionally, the substitution of the loss function with SIoU facilitates a more rapid model convergence and a more precise pinpointing of defect locations. The empirical findings indicate that the enhanced YOLOv8 algorithm has achieved a marked improvement in metrics such as Precision, Recall, F1, and mAP, with increases of 3.39%, 0.86%, 2.20%, and 2.81% respectively, when juxtaposed with the original YOLOv8 model. Moreover, in external validations, the FPS enhancements over the original YOLOv8, YOLOv5, YOLOX, Faster RCNN, and SSD deep-learning models are 6.75 Hz, 10.84 Hz, 12.79 Hz, 28.24 Hz, and 21.57 Hz, respectively, and the mAP improvements in practical detection are 2.79%, 2.92%, 3.08%, 7.07%, and 3.84% respectively. The refined model not only ensures efficient and accurate tea-grading recognition but also boasts high recognition rates and swift detection capabilities, thereby establishing a foundation for the development of tea-picking robots and tea quality grading devices.</description><identifier>ISSN: 2311-7524</identifier><identifier>EISSN: 2311-7524</identifier><identifier>DOI: 10.3390/horticulturae10121347</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Adaptability ; Algorithms ; Automation ; Computer applications ; Datasets ; Deep learning ; Efficient Multi-Scale Attention Module with Cross-Spatial Learning ; grading recognition ; Hierarchical Vision Transformer using Shifted Windows ; Image processing ; improved YOLOv8 ; Information processing ; Leaves ; Machine learning ; Neural networks ; Picking ; Robots ; SIoU ; Spatial discrimination learning ; Task complexity ; Tea</subject><ispartof>Horticulturae, 2024-12, Vol.10 (12), p.1347</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-c31c965639111ec48f40c1e7413c18ecb4c4dfeadf78e7b8ed19cc93b8095ea3</cites><orcidid>0009-0009-2102-411X ; 0009-0004-4744-2719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149638703/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149638703?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Wang, Zejun</creatorcontrib><creatorcontrib>Xia, Yuxin</creatorcontrib><creatorcontrib>Wang, Houqiao</creatorcontrib><creatorcontrib>Liu, Xiaohui</creatorcontrib><creatorcontrib>Che, Raoqiong</creatorcontrib><creatorcontrib>Guo, Xiaoxue</creatorcontrib><creatorcontrib>Li, Hongxu</creatorcontrib><creatorcontrib>Zhang, Shihao</creatorcontrib><creatorcontrib>Wang, Baijuan</creatorcontrib><title>Fresh Tea Leaf-Grading Detection: An Improved YOLOv8 Neural Network Model Utilizing Deep Learning</title><title>Horticulturae</title><description>To facilitate the realization of automated tea picking and enhance the speed and accuracy of tea leaf grading detection, this study proposes an improved YOLOv8 network for fresh tea leaf grading recognition. This approach integrates a Hierarchical Vision Transformer using Shifted Windows to replace segments of the original YOLOv8’s network architecture, thereby alleviating the computational load of dense image processing tasks and reducing computational expenses. The incorporation of an Efficient Multi-Scale Attention Module with Cross-Spatial Learning serves to attenuate the influence of irrelevant features in complex backgrounds, which in turn, elevates the model’s detection Precision. Additionally, the substitution of the loss function with SIoU facilitates a more rapid model convergence and a more precise pinpointing of defect locations. The empirical findings indicate that the enhanced YOLOv8 algorithm has achieved a marked improvement in metrics such as Precision, Recall, F1, and mAP, with increases of 3.39%, 0.86%, 2.20%, and 2.81% respectively, when juxtaposed with the original YOLOv8 model. Moreover, in external validations, the FPS enhancements over the original YOLOv8, YOLOv5, YOLOX, Faster RCNN, and SSD deep-learning models are 6.75 Hz, 10.84 Hz, 12.79 Hz, 28.24 Hz, and 21.57 Hz, respectively, and the mAP improvements in practical detection are 2.79%, 2.92%, 3.08%, 7.07%, and 3.84% respectively. The refined model not only ensures efficient and accurate tea-grading recognition but also boasts high recognition rates and swift detection capabilities, thereby establishing a foundation for the development of tea-picking robots and tea quality grading devices.</description><subject>Accuracy</subject><subject>Adaptability</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Computer applications</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Efficient Multi-Scale Attention Module with Cross-Spatial Learning</subject><subject>grading recognition</subject><subject>Hierarchical Vision Transformer using Shifted Windows</subject><subject>Image processing</subject><subject>improved YOLOv8</subject><subject>Information processing</subject><subject>Leaves</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Picking</subject><subject>Robots</subject><subject>SIoU</subject><subject>Spatial discrimination learning</subject><subject>Task complexity</subject><subject>Tea</subject><issn>2311-7524</issn><issn>2311-7524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkUuP0zAQxy0EEquyHwHJEucsfsWxuVULu1Qq9FIOnCxnMum6pHFx3F3Bp8chCHHgNA_N_zcvQl5zdiOlZW8fYsoBLkO-JI-cccGlap6RKyE5r5paqOf_-C_J9TQdGWOCKa0bcUX8XcLpge7R0y36vrpPvgvjgb7HjJBDHN_R9Ug3p3OKj9jRr7vt7tHQz1i6DcXkp5i-0U-xw4F-yWEIPxcxnmdcGkv0irzo_TDh9R-7Ivu7D_vbj9V2d7-5XW8rEFrlCiQHq2stLeccQZleMeDYKC6BG4RWgep69F3fGGxagx23AFa2htkavVyRzYLtoj-6cwonn3646IP7nYjp4Px8qQFdrcF3qIy0Sqi2Na0QHFptQaFva20K683CKlt_v-CU3TFe0limd5Irq6VpmCxVN0vVwRdoGPuYkwc_s08B4oh9KPm1EdxINqtWpF4EkOI0Jez_jsmZm5_p_vtM-QvsY5Vj</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Wang, Zejun</creator><creator>Xia, Yuxin</creator><creator>Wang, Houqiao</creator><creator>Liu, Xiaohui</creator><creator>Che, Raoqiong</creator><creator>Guo, Xiaoxue</creator><creator>Li, Hongxu</creator><creator>Zhang, Shihao</creator><creator>Wang, Baijuan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0009-2102-411X</orcidid><orcidid>https://orcid.org/0009-0004-4744-2719</orcidid></search><sort><creationdate>20241201</creationdate><title>Fresh Tea Leaf-Grading Detection: An Improved YOLOv8 Neural Network Model Utilizing Deep Learning</title><author>Wang, Zejun ; Xia, Yuxin ; Wang, Houqiao ; Liu, Xiaohui ; Che, Raoqiong ; Guo, Xiaoxue ; Li, Hongxu ; Zhang, Shihao ; Wang, Baijuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-c31c965639111ec48f40c1e7413c18ecb4c4dfeadf78e7b8ed19cc93b8095ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adaptability</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Computer applications</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Efficient Multi-Scale Attention Module with Cross-Spatial Learning</topic><topic>grading recognition</topic><topic>Hierarchical Vision Transformer using Shifted Windows</topic><topic>Image processing</topic><topic>improved YOLOv8</topic><topic>Information processing</topic><topic>Leaves</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Picking</topic><topic>Robots</topic><topic>SIoU</topic><topic>Spatial discrimination learning</topic><topic>Task complexity</topic><topic>Tea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zejun</creatorcontrib><creatorcontrib>Xia, Yuxin</creatorcontrib><creatorcontrib>Wang, Houqiao</creatorcontrib><creatorcontrib>Liu, Xiaohui</creatorcontrib><creatorcontrib>Che, Raoqiong</creatorcontrib><creatorcontrib>Guo, Xiaoxue</creatorcontrib><creatorcontrib>Li, Hongxu</creatorcontrib><creatorcontrib>Zhang, Shihao</creatorcontrib><creatorcontrib>Wang, Baijuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Agricultural Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Horticulturae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zejun</au><au>Xia, Yuxin</au><au>Wang, Houqiao</au><au>Liu, Xiaohui</au><au>Che, Raoqiong</au><au>Guo, Xiaoxue</au><au>Li, Hongxu</au><au>Zhang, Shihao</au><au>Wang, Baijuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fresh Tea Leaf-Grading Detection: An Improved YOLOv8 Neural Network Model Utilizing Deep Learning</atitle><jtitle>Horticulturae</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>10</volume><issue>12</issue><spage>1347</spage><pages>1347-</pages><issn>2311-7524</issn><eissn>2311-7524</eissn><abstract>To facilitate the realization of automated tea picking and enhance the speed and accuracy of tea leaf grading detection, this study proposes an improved YOLOv8 network for fresh tea leaf grading recognition. This approach integrates a Hierarchical Vision Transformer using Shifted Windows to replace segments of the original YOLOv8’s network architecture, thereby alleviating the computational load of dense image processing tasks and reducing computational expenses. The incorporation of an Efficient Multi-Scale Attention Module with Cross-Spatial Learning serves to attenuate the influence of irrelevant features in complex backgrounds, which in turn, elevates the model’s detection Precision. Additionally, the substitution of the loss function with SIoU facilitates a more rapid model convergence and a more precise pinpointing of defect locations. The empirical findings indicate that the enhanced YOLOv8 algorithm has achieved a marked improvement in metrics such as Precision, Recall, F1, and mAP, with increases of 3.39%, 0.86%, 2.20%, and 2.81% respectively, when juxtaposed with the original YOLOv8 model. Moreover, in external validations, the FPS enhancements over the original YOLOv8, YOLOv5, YOLOX, Faster RCNN, and SSD deep-learning models are 6.75 Hz, 10.84 Hz, 12.79 Hz, 28.24 Hz, and 21.57 Hz, respectively, and the mAP improvements in practical detection are 2.79%, 2.92%, 3.08%, 7.07%, and 3.84% respectively. The refined model not only ensures efficient and accurate tea-grading recognition but also boasts high recognition rates and swift detection capabilities, thereby establishing a foundation for the development of tea-picking robots and tea quality grading devices.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/horticulturae10121347</doi><orcidid>https://orcid.org/0009-0009-2102-411X</orcidid><orcidid>https://orcid.org/0009-0004-4744-2719</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2311-7524
ispartof Horticulturae, 2024-12, Vol.10 (12), p.1347
issn 2311-7524
2311-7524
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_56cade4839424bb8b221cb69c4eab568
source ProQuest - Publicly Available Content Database
subjects Accuracy
Adaptability
Algorithms
Automation
Computer applications
Datasets
Deep learning
Efficient Multi-Scale Attention Module with Cross-Spatial Learning
grading recognition
Hierarchical Vision Transformer using Shifted Windows
Image processing
improved YOLOv8
Information processing
Leaves
Machine learning
Neural networks
Picking
Robots
SIoU
Spatial discrimination learning
Task complexity
Tea
title Fresh Tea Leaf-Grading Detection: An Improved YOLOv8 Neural Network Model Utilizing Deep Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T11%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fresh%20Tea%20Leaf-Grading%20Detection:%20An%20Improved%20YOLOv8%20Neural%20Network%20Model%20Utilizing%20Deep%20Learning&rft.jtitle=Horticulturae&rft.au=Wang,%20Zejun&rft.date=2024-12-01&rft.volume=10&rft.issue=12&rft.spage=1347&rft.pages=1347-&rft.issn=2311-7524&rft.eissn=2311-7524&rft_id=info:doi/10.3390/horticulturae10121347&rft_dat=%3Cgale_doaj_%3EA821830496%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-c31c965639111ec48f40c1e7413c18ecb4c4dfeadf78e7b8ed19cc93b8095ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149638703&rft_id=info:pmid/&rft_galeid=A821830496&rfr_iscdi=true