Loading…
Fresh Tea Leaf-Grading Detection: An Improved YOLOv8 Neural Network Model Utilizing Deep Learning
To facilitate the realization of automated tea picking and enhance the speed and accuracy of tea leaf grading detection, this study proposes an improved YOLOv8 network for fresh tea leaf grading recognition. This approach integrates a Hierarchical Vision Transformer using Shifted Windows to replace...
Saved in:
Published in: | Horticulturae 2024-12, Vol.10 (12), p.1347 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c264t-c31c965639111ec48f40c1e7413c18ecb4c4dfeadf78e7b8ed19cc93b8095ea3 |
container_end_page | |
container_issue | 12 |
container_start_page | 1347 |
container_title | Horticulturae |
container_volume | 10 |
creator | Wang, Zejun Xia, Yuxin Wang, Houqiao Liu, Xiaohui Che, Raoqiong Guo, Xiaoxue Li, Hongxu Zhang, Shihao Wang, Baijuan |
description | To facilitate the realization of automated tea picking and enhance the speed and accuracy of tea leaf grading detection, this study proposes an improved YOLOv8 network for fresh tea leaf grading recognition. This approach integrates a Hierarchical Vision Transformer using Shifted Windows to replace segments of the original YOLOv8’s network architecture, thereby alleviating the computational load of dense image processing tasks and reducing computational expenses. The incorporation of an Efficient Multi-Scale Attention Module with Cross-Spatial Learning serves to attenuate the influence of irrelevant features in complex backgrounds, which in turn, elevates the model’s detection Precision. Additionally, the substitution of the loss function with SIoU facilitates a more rapid model convergence and a more precise pinpointing of defect locations. The empirical findings indicate that the enhanced YOLOv8 algorithm has achieved a marked improvement in metrics such as Precision, Recall, F1, and mAP, with increases of 3.39%, 0.86%, 2.20%, and 2.81% respectively, when juxtaposed with the original YOLOv8 model. Moreover, in external validations, the FPS enhancements over the original YOLOv8, YOLOv5, YOLOX, Faster RCNN, and SSD deep-learning models are 6.75 Hz, 10.84 Hz, 12.79 Hz, 28.24 Hz, and 21.57 Hz, respectively, and the mAP improvements in practical detection are 2.79%, 2.92%, 3.08%, 7.07%, and 3.84% respectively. The refined model not only ensures efficient and accurate tea-grading recognition but also boasts high recognition rates and swift detection capabilities, thereby establishing a foundation for the development of tea-picking robots and tea quality grading devices. |
doi_str_mv | 10.3390/horticulturae10121347 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_56cade4839424bb8b221cb69c4eab568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821830496</galeid><doaj_id>oai_doaj_org_article_56cade4839424bb8b221cb69c4eab568</doaj_id><sourcerecordid>A821830496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-c31c965639111ec48f40c1e7413c18ecb4c4dfeadf78e7b8ed19cc93b8095ea3</originalsourceid><addsrcrecordid>eNptkUuP0zAQxy0EEquyHwHJEucsfsWxuVULu1Qq9FIOnCxnMum6pHFx3F3Bp8chCHHgNA_N_zcvQl5zdiOlZW8fYsoBLkO-JI-cccGlap6RKyE5r5paqOf_-C_J9TQdGWOCKa0bcUX8XcLpge7R0y36vrpPvgvjgb7HjJBDHN_R9Ug3p3OKj9jRr7vt7tHQz1i6DcXkp5i-0U-xw4F-yWEIPxcxnmdcGkv0irzo_TDh9R-7Ivu7D_vbj9V2d7-5XW8rEFrlCiQHq2stLeccQZleMeDYKC6BG4RWgep69F3fGGxagx23AFa2htkavVyRzYLtoj-6cwonn3646IP7nYjp4Px8qQFdrcF3qIy0Sqi2Na0QHFptQaFva20K683CKlt_v-CU3TFe0limd5Irq6VpmCxVN0vVwRdoGPuYkwc_s08B4oh9KPm1EdxINqtWpF4EkOI0Jez_jsmZm5_p_vtM-QvsY5Vj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149638703</pqid></control><display><type>article</type><title>Fresh Tea Leaf-Grading Detection: An Improved YOLOv8 Neural Network Model Utilizing Deep Learning</title><source>ProQuest - Publicly Available Content Database</source><creator>Wang, Zejun ; Xia, Yuxin ; Wang, Houqiao ; Liu, Xiaohui ; Che, Raoqiong ; Guo, Xiaoxue ; Li, Hongxu ; Zhang, Shihao ; Wang, Baijuan</creator><creatorcontrib>Wang, Zejun ; Xia, Yuxin ; Wang, Houqiao ; Liu, Xiaohui ; Che, Raoqiong ; Guo, Xiaoxue ; Li, Hongxu ; Zhang, Shihao ; Wang, Baijuan</creatorcontrib><description>To facilitate the realization of automated tea picking and enhance the speed and accuracy of tea leaf grading detection, this study proposes an improved YOLOv8 network for fresh tea leaf grading recognition. This approach integrates a Hierarchical Vision Transformer using Shifted Windows to replace segments of the original YOLOv8’s network architecture, thereby alleviating the computational load of dense image processing tasks and reducing computational expenses. The incorporation of an Efficient Multi-Scale Attention Module with Cross-Spatial Learning serves to attenuate the influence of irrelevant features in complex backgrounds, which in turn, elevates the model’s detection Precision. Additionally, the substitution of the loss function with SIoU facilitates a more rapid model convergence and a more precise pinpointing of defect locations. The empirical findings indicate that the enhanced YOLOv8 algorithm has achieved a marked improvement in metrics such as Precision, Recall, F1, and mAP, with increases of 3.39%, 0.86%, 2.20%, and 2.81% respectively, when juxtaposed with the original YOLOv8 model. Moreover, in external validations, the FPS enhancements over the original YOLOv8, YOLOv5, YOLOX, Faster RCNN, and SSD deep-learning models are 6.75 Hz, 10.84 Hz, 12.79 Hz, 28.24 Hz, and 21.57 Hz, respectively, and the mAP improvements in practical detection are 2.79%, 2.92%, 3.08%, 7.07%, and 3.84% respectively. The refined model not only ensures efficient and accurate tea-grading recognition but also boasts high recognition rates and swift detection capabilities, thereby establishing a foundation for the development of tea-picking robots and tea quality grading devices.</description><identifier>ISSN: 2311-7524</identifier><identifier>EISSN: 2311-7524</identifier><identifier>DOI: 10.3390/horticulturae10121347</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Adaptability ; Algorithms ; Automation ; Computer applications ; Datasets ; Deep learning ; Efficient Multi-Scale Attention Module with Cross-Spatial Learning ; grading recognition ; Hierarchical Vision Transformer using Shifted Windows ; Image processing ; improved YOLOv8 ; Information processing ; Leaves ; Machine learning ; Neural networks ; Picking ; Robots ; SIoU ; Spatial discrimination learning ; Task complexity ; Tea</subject><ispartof>Horticulturae, 2024-12, Vol.10 (12), p.1347</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-c31c965639111ec48f40c1e7413c18ecb4c4dfeadf78e7b8ed19cc93b8095ea3</cites><orcidid>0009-0009-2102-411X ; 0009-0004-4744-2719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149638703/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149638703?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Wang, Zejun</creatorcontrib><creatorcontrib>Xia, Yuxin</creatorcontrib><creatorcontrib>Wang, Houqiao</creatorcontrib><creatorcontrib>Liu, Xiaohui</creatorcontrib><creatorcontrib>Che, Raoqiong</creatorcontrib><creatorcontrib>Guo, Xiaoxue</creatorcontrib><creatorcontrib>Li, Hongxu</creatorcontrib><creatorcontrib>Zhang, Shihao</creatorcontrib><creatorcontrib>Wang, Baijuan</creatorcontrib><title>Fresh Tea Leaf-Grading Detection: An Improved YOLOv8 Neural Network Model Utilizing Deep Learning</title><title>Horticulturae</title><description>To facilitate the realization of automated tea picking and enhance the speed and accuracy of tea leaf grading detection, this study proposes an improved YOLOv8 network for fresh tea leaf grading recognition. This approach integrates a Hierarchical Vision Transformer using Shifted Windows to replace segments of the original YOLOv8’s network architecture, thereby alleviating the computational load of dense image processing tasks and reducing computational expenses. The incorporation of an Efficient Multi-Scale Attention Module with Cross-Spatial Learning serves to attenuate the influence of irrelevant features in complex backgrounds, which in turn, elevates the model’s detection Precision. Additionally, the substitution of the loss function with SIoU facilitates a more rapid model convergence and a more precise pinpointing of defect locations. The empirical findings indicate that the enhanced YOLOv8 algorithm has achieved a marked improvement in metrics such as Precision, Recall, F1, and mAP, with increases of 3.39%, 0.86%, 2.20%, and 2.81% respectively, when juxtaposed with the original YOLOv8 model. Moreover, in external validations, the FPS enhancements over the original YOLOv8, YOLOv5, YOLOX, Faster RCNN, and SSD deep-learning models are 6.75 Hz, 10.84 Hz, 12.79 Hz, 28.24 Hz, and 21.57 Hz, respectively, and the mAP improvements in practical detection are 2.79%, 2.92%, 3.08%, 7.07%, and 3.84% respectively. The refined model not only ensures efficient and accurate tea-grading recognition but also boasts high recognition rates and swift detection capabilities, thereby establishing a foundation for the development of tea-picking robots and tea quality grading devices.</description><subject>Accuracy</subject><subject>Adaptability</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Computer applications</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Efficient Multi-Scale Attention Module with Cross-Spatial Learning</subject><subject>grading recognition</subject><subject>Hierarchical Vision Transformer using Shifted Windows</subject><subject>Image processing</subject><subject>improved YOLOv8</subject><subject>Information processing</subject><subject>Leaves</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Picking</subject><subject>Robots</subject><subject>SIoU</subject><subject>Spatial discrimination learning</subject><subject>Task complexity</subject><subject>Tea</subject><issn>2311-7524</issn><issn>2311-7524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkUuP0zAQxy0EEquyHwHJEucsfsWxuVULu1Qq9FIOnCxnMum6pHFx3F3Bp8chCHHgNA_N_zcvQl5zdiOlZW8fYsoBLkO-JI-cccGlap6RKyE5r5paqOf_-C_J9TQdGWOCKa0bcUX8XcLpge7R0y36vrpPvgvjgb7HjJBDHN_R9Ug3p3OKj9jRr7vt7tHQz1i6DcXkp5i-0U-xw4F-yWEIPxcxnmdcGkv0irzo_TDh9R-7Ivu7D_vbj9V2d7-5XW8rEFrlCiQHq2stLeccQZleMeDYKC6BG4RWgep69F3fGGxagx23AFa2htkavVyRzYLtoj-6cwonn3646IP7nYjp4Px8qQFdrcF3qIy0Sqi2Na0QHFptQaFva20K683CKlt_v-CU3TFe0limd5Irq6VpmCxVN0vVwRdoGPuYkwc_s08B4oh9KPm1EdxINqtWpF4EkOI0Jez_jsmZm5_p_vtM-QvsY5Vj</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Wang, Zejun</creator><creator>Xia, Yuxin</creator><creator>Wang, Houqiao</creator><creator>Liu, Xiaohui</creator><creator>Che, Raoqiong</creator><creator>Guo, Xiaoxue</creator><creator>Li, Hongxu</creator><creator>Zhang, Shihao</creator><creator>Wang, Baijuan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0009-2102-411X</orcidid><orcidid>https://orcid.org/0009-0004-4744-2719</orcidid></search><sort><creationdate>20241201</creationdate><title>Fresh Tea Leaf-Grading Detection: An Improved YOLOv8 Neural Network Model Utilizing Deep Learning</title><author>Wang, Zejun ; Xia, Yuxin ; Wang, Houqiao ; Liu, Xiaohui ; Che, Raoqiong ; Guo, Xiaoxue ; Li, Hongxu ; Zhang, Shihao ; Wang, Baijuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-c31c965639111ec48f40c1e7413c18ecb4c4dfeadf78e7b8ed19cc93b8095ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adaptability</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Computer applications</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Efficient Multi-Scale Attention Module with Cross-Spatial Learning</topic><topic>grading recognition</topic><topic>Hierarchical Vision Transformer using Shifted Windows</topic><topic>Image processing</topic><topic>improved YOLOv8</topic><topic>Information processing</topic><topic>Leaves</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Picking</topic><topic>Robots</topic><topic>SIoU</topic><topic>Spatial discrimination learning</topic><topic>Task complexity</topic><topic>Tea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zejun</creatorcontrib><creatorcontrib>Xia, Yuxin</creatorcontrib><creatorcontrib>Wang, Houqiao</creatorcontrib><creatorcontrib>Liu, Xiaohui</creatorcontrib><creatorcontrib>Che, Raoqiong</creatorcontrib><creatorcontrib>Guo, Xiaoxue</creatorcontrib><creatorcontrib>Li, Hongxu</creatorcontrib><creatorcontrib>Zhang, Shihao</creatorcontrib><creatorcontrib>Wang, Baijuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Agricultural Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Horticulturae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zejun</au><au>Xia, Yuxin</au><au>Wang, Houqiao</au><au>Liu, Xiaohui</au><au>Che, Raoqiong</au><au>Guo, Xiaoxue</au><au>Li, Hongxu</au><au>Zhang, Shihao</au><au>Wang, Baijuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fresh Tea Leaf-Grading Detection: An Improved YOLOv8 Neural Network Model Utilizing Deep Learning</atitle><jtitle>Horticulturae</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>10</volume><issue>12</issue><spage>1347</spage><pages>1347-</pages><issn>2311-7524</issn><eissn>2311-7524</eissn><abstract>To facilitate the realization of automated tea picking and enhance the speed and accuracy of tea leaf grading detection, this study proposes an improved YOLOv8 network for fresh tea leaf grading recognition. This approach integrates a Hierarchical Vision Transformer using Shifted Windows to replace segments of the original YOLOv8’s network architecture, thereby alleviating the computational load of dense image processing tasks and reducing computational expenses. The incorporation of an Efficient Multi-Scale Attention Module with Cross-Spatial Learning serves to attenuate the influence of irrelevant features in complex backgrounds, which in turn, elevates the model’s detection Precision. Additionally, the substitution of the loss function with SIoU facilitates a more rapid model convergence and a more precise pinpointing of defect locations. The empirical findings indicate that the enhanced YOLOv8 algorithm has achieved a marked improvement in metrics such as Precision, Recall, F1, and mAP, with increases of 3.39%, 0.86%, 2.20%, and 2.81% respectively, when juxtaposed with the original YOLOv8 model. Moreover, in external validations, the FPS enhancements over the original YOLOv8, YOLOv5, YOLOX, Faster RCNN, and SSD deep-learning models are 6.75 Hz, 10.84 Hz, 12.79 Hz, 28.24 Hz, and 21.57 Hz, respectively, and the mAP improvements in practical detection are 2.79%, 2.92%, 3.08%, 7.07%, and 3.84% respectively. The refined model not only ensures efficient and accurate tea-grading recognition but also boasts high recognition rates and swift detection capabilities, thereby establishing a foundation for the development of tea-picking robots and tea quality grading devices.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/horticulturae10121347</doi><orcidid>https://orcid.org/0009-0009-2102-411X</orcidid><orcidid>https://orcid.org/0009-0004-4744-2719</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2311-7524 |
ispartof | Horticulturae, 2024-12, Vol.10 (12), p.1347 |
issn | 2311-7524 2311-7524 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_56cade4839424bb8b221cb69c4eab568 |
source | ProQuest - Publicly Available Content Database |
subjects | Accuracy Adaptability Algorithms Automation Computer applications Datasets Deep learning Efficient Multi-Scale Attention Module with Cross-Spatial Learning grading recognition Hierarchical Vision Transformer using Shifted Windows Image processing improved YOLOv8 Information processing Leaves Machine learning Neural networks Picking Robots SIoU Spatial discrimination learning Task complexity Tea |
title | Fresh Tea Leaf-Grading Detection: An Improved YOLOv8 Neural Network Model Utilizing Deep Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T11%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fresh%20Tea%20Leaf-Grading%20Detection:%20An%20Improved%20YOLOv8%20Neural%20Network%20Model%20Utilizing%20Deep%20Learning&rft.jtitle=Horticulturae&rft.au=Wang,%20Zejun&rft.date=2024-12-01&rft.volume=10&rft.issue=12&rft.spage=1347&rft.pages=1347-&rft.issn=2311-7524&rft.eissn=2311-7524&rft_id=info:doi/10.3390/horticulturae10121347&rft_dat=%3Cgale_doaj_%3EA821830496%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-c31c965639111ec48f40c1e7413c18ecb4c4dfeadf78e7b8ed19cc93b8095ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149638703&rft_id=info:pmid/&rft_galeid=A821830496&rfr_iscdi=true |