Loading…
Assessment of Energy Recovery Potential in Urban Underground Utility Tunnels: A Case Study
Underground spaces contain abundant geothermal energy, which can be recovered for building ventilation, reducing energy consumption. However, current research lacks a comprehensive quantitative assessment of its energy recovery. This research evaluates the energy recovery potential of the Xingfu For...
Saved in:
Published in: | Buildings (Basel) 2024-10, Vol.14 (10), p.3113 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c303t-f17cbe03358737fcf167103f7f3e8fee4e2e9e29350c52964a75eec08cabacb13 |
container_end_page | |
container_issue | 10 |
container_start_page | 3113 |
container_title | Buildings (Basel) |
container_volume | 14 |
creator | Wei, Tong Fan, Mingyue Xu, Zijun Li, Weijun Gu, Zhaolin Luo, Xilian |
description | Underground spaces contain abundant geothermal energy, which can be recovered for building ventilation, reducing energy consumption. However, current research lacks a comprehensive quantitative assessment of its energy recovery. This research evaluates the energy recovery potential of the Xingfu Forest Belt Urban Underground Utility Tunnels. Field experiments revealed a 7 °C temperature difference in winter and a 2.5 °C reduction during the summer-to-autumn transition. A computational fluid dynamics (CFD) model was developed to assess the impact of design and operational factors such as air exchange rates on outlet temperatures and heat exchange efficiency. The results indicate that at an air change rate of 0.5 h−1, the tunnel outlet temperature dropped by 10.5 °C. A 200 m tunnel transferred 8.7 × 1010 J of heat over 30 days, and a 6 m × 6 m cross-sectional area achieved 1.1 × 1011 J of total heat transfer. Increasing the air exchange rate and cross-sectional area reduces the inlet–outlet temperature difference while enhancing heat transfer capacity. However, the optimal buried depth should not exceed 8 m due to cost and safety considerations. This study demonstrates the potential of shallow geothermal energy as an eco-friendly and efficient solution for enhancing building ventilation systems. |
doi_str_mv | 10.3390/buildings14103113 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_570b9626520448b3b20e3447d2e939b3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814386876</galeid><doaj_id>oai_doaj_org_article_570b9626520448b3b20e3447d2e939b3</doaj_id><sourcerecordid>A814386876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-f17cbe03358737fcf167103f7f3e8fee4e2e9e29350c52964a75eec08cabacb13</originalsourceid><addsrcrecordid>eNplUcFqHDEMHUoLDWk-IDdDz5valj2e6W1Z0jYQaGmzl1yM7ZEXL7N2ansK8_d1s6EUKoEkpKcnCXXdNaM3ACP9YJcwTyEeChOMAmPwqrvgVMmNBDq-_id-212VcqRNBsm5FBfd47YULOWEsZLkyW3EfFjJd3TpF-aVfEu1VYKZSYhkn61pNk4Nk9MSJ7KvYQ51JQ9LjDiXj2RLdqYg-VGXaX3XvfFmLnj14i-7_afbh92Xzf3Xz3e77f3GAYW68Uw5ixRADgqUd571ql3hlQccPKJAjiPyESR1ko-9MEoiOjo4Y42zDC67uzPvlMxRP-VwMnnVyQT9nEj5oE2uwc2opaJ27HkvORVisGA5RRBCTW0EjBYa1_sz11NOPxcsVR_TkmNbXwPjtGd06IeGujmjDqaRhuhTzcY1nfAUXIroQ8tvByagwVXfGti5weVUSkb_d01G9Z8X6v9eCL8BgrePmA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120610868</pqid></control><display><type>article</type><title>Assessment of Energy Recovery Potential in Urban Underground Utility Tunnels: A Case Study</title><source>Publicly Available Content Database</source><creator>Wei, Tong ; Fan, Mingyue ; Xu, Zijun ; Li, Weijun ; Gu, Zhaolin ; Luo, Xilian</creator><creatorcontrib>Wei, Tong ; Fan, Mingyue ; Xu, Zijun ; Li, Weijun ; Gu, Zhaolin ; Luo, Xilian</creatorcontrib><description>Underground spaces contain abundant geothermal energy, which can be recovered for building ventilation, reducing energy consumption. However, current research lacks a comprehensive quantitative assessment of its energy recovery. This research evaluates the energy recovery potential of the Xingfu Forest Belt Urban Underground Utility Tunnels. Field experiments revealed a 7 °C temperature difference in winter and a 2.5 °C reduction during the summer-to-autumn transition. A computational fluid dynamics (CFD) model was developed to assess the impact of design and operational factors such as air exchange rates on outlet temperatures and heat exchange efficiency. The results indicate that at an air change rate of 0.5 h−1, the tunnel outlet temperature dropped by 10.5 °C. A 200 m tunnel transferred 8.7 × 1010 J of heat over 30 days, and a 6 m × 6 m cross-sectional area achieved 1.1 × 1011 J of total heat transfer. Increasing the air exchange rate and cross-sectional area reduces the inlet–outlet temperature difference while enhancing heat transfer capacity. However, the optimal buried depth should not exceed 8 m due to cost and safety considerations. This study demonstrates the potential of shallow geothermal energy as an eco-friendly and efficient solution for enhancing building ventilation systems.</description><identifier>ISSN: 2075-5309</identifier><identifier>EISSN: 2075-5309</identifier><identifier>DOI: 10.3390/buildings14103113</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air temperature ; Analysis ; Architecture and energy conservation ; building energy efficiency ; Case studies ; CFD ; China ; Computational fluid dynamics ; Cooling ; Design factors ; Emissions ; Energy conservation ; Energy consumption ; Energy recovery ; Enthalpy ; Field tests ; Fluid dynamics ; Geothermal energy ; Geothermal power ; Heat exchange ; heat exchange efficiency ; Heat recovery systems ; Heat transfer ; Humidity ; Hydrodynamics ; Industrial plant emissions ; Money ; Roads & highways ; Sensors ; shallow geothermal energy ; Summer ; Temperature ; Temperature gradients ; Tunnels ; underground tunnel ventilation ; Underground utilities ; Ventilation</subject><ispartof>Buildings (Basel), 2024-10, Vol.14 (10), p.3113</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-f17cbe03358737fcf167103f7f3e8fee4e2e9e29350c52964a75eec08cabacb13</cites><orcidid>0000-0003-1384-5531 ; 0000-0002-1033-232X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120610868/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120610868?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25728,27898,27899,36986,44563,75093</link.rule.ids></links><search><creatorcontrib>Wei, Tong</creatorcontrib><creatorcontrib>Fan, Mingyue</creatorcontrib><creatorcontrib>Xu, Zijun</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Gu, Zhaolin</creatorcontrib><creatorcontrib>Luo, Xilian</creatorcontrib><title>Assessment of Energy Recovery Potential in Urban Underground Utility Tunnels: A Case Study</title><title>Buildings (Basel)</title><description>Underground spaces contain abundant geothermal energy, which can be recovered for building ventilation, reducing energy consumption. However, current research lacks a comprehensive quantitative assessment of its energy recovery. This research evaluates the energy recovery potential of the Xingfu Forest Belt Urban Underground Utility Tunnels. Field experiments revealed a 7 °C temperature difference in winter and a 2.5 °C reduction during the summer-to-autumn transition. A computational fluid dynamics (CFD) model was developed to assess the impact of design and operational factors such as air exchange rates on outlet temperatures and heat exchange efficiency. The results indicate that at an air change rate of 0.5 h−1, the tunnel outlet temperature dropped by 10.5 °C. A 200 m tunnel transferred 8.7 × 1010 J of heat over 30 days, and a 6 m × 6 m cross-sectional area achieved 1.1 × 1011 J of total heat transfer. Increasing the air exchange rate and cross-sectional area reduces the inlet–outlet temperature difference while enhancing heat transfer capacity. However, the optimal buried depth should not exceed 8 m due to cost and safety considerations. This study demonstrates the potential of shallow geothermal energy as an eco-friendly and efficient solution for enhancing building ventilation systems.</description><subject>Air temperature</subject><subject>Analysis</subject><subject>Architecture and energy conservation</subject><subject>building energy efficiency</subject><subject>Case studies</subject><subject>CFD</subject><subject>China</subject><subject>Computational fluid dynamics</subject><subject>Cooling</subject><subject>Design factors</subject><subject>Emissions</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy recovery</subject><subject>Enthalpy</subject><subject>Field tests</subject><subject>Fluid dynamics</subject><subject>Geothermal energy</subject><subject>Geothermal power</subject><subject>Heat exchange</subject><subject>heat exchange efficiency</subject><subject>Heat recovery systems</subject><subject>Heat transfer</subject><subject>Humidity</subject><subject>Hydrodynamics</subject><subject>Industrial plant emissions</subject><subject>Money</subject><subject>Roads & highways</subject><subject>Sensors</subject><subject>shallow geothermal energy</subject><subject>Summer</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Tunnels</subject><subject>underground tunnel ventilation</subject><subject>Underground utilities</subject><subject>Ventilation</subject><issn>2075-5309</issn><issn>2075-5309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplUcFqHDEMHUoLDWk-IDdDz5valj2e6W1Z0jYQaGmzl1yM7ZEXL7N2ansK8_d1s6EUKoEkpKcnCXXdNaM3ACP9YJcwTyEeChOMAmPwqrvgVMmNBDq-_id-212VcqRNBsm5FBfd47YULOWEsZLkyW3EfFjJd3TpF-aVfEu1VYKZSYhkn61pNk4Nk9MSJ7KvYQ51JQ9LjDiXj2RLdqYg-VGXaX3XvfFmLnj14i-7_afbh92Xzf3Xz3e77f3GAYW68Uw5ixRADgqUd571ql3hlQccPKJAjiPyESR1ko-9MEoiOjo4Y42zDC67uzPvlMxRP-VwMnnVyQT9nEj5oE2uwc2opaJ27HkvORVisGA5RRBCTW0EjBYa1_sz11NOPxcsVR_TkmNbXwPjtGd06IeGujmjDqaRhuhTzcY1nfAUXIroQ8tvByagwVXfGti5weVUSkb_d01G9Z8X6v9eCL8BgrePmA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Wei, Tong</creator><creator>Fan, Mingyue</creator><creator>Xu, Zijun</creator><creator>Li, Weijun</creator><creator>Gu, Zhaolin</creator><creator>Luo, Xilian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1384-5531</orcidid><orcidid>https://orcid.org/0000-0002-1033-232X</orcidid></search><sort><creationdate>20241001</creationdate><title>Assessment of Energy Recovery Potential in Urban Underground Utility Tunnels: A Case Study</title><author>Wei, Tong ; Fan, Mingyue ; Xu, Zijun ; Li, Weijun ; Gu, Zhaolin ; Luo, Xilian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-f17cbe03358737fcf167103f7f3e8fee4e2e9e29350c52964a75eec08cabacb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air temperature</topic><topic>Analysis</topic><topic>Architecture and energy conservation</topic><topic>building energy efficiency</topic><topic>Case studies</topic><topic>CFD</topic><topic>China</topic><topic>Computational fluid dynamics</topic><topic>Cooling</topic><topic>Design factors</topic><topic>Emissions</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy recovery</topic><topic>Enthalpy</topic><topic>Field tests</topic><topic>Fluid dynamics</topic><topic>Geothermal energy</topic><topic>Geothermal power</topic><topic>Heat exchange</topic><topic>heat exchange efficiency</topic><topic>Heat recovery systems</topic><topic>Heat transfer</topic><topic>Humidity</topic><topic>Hydrodynamics</topic><topic>Industrial plant emissions</topic><topic>Money</topic><topic>Roads & highways</topic><topic>Sensors</topic><topic>shallow geothermal energy</topic><topic>Summer</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Tunnels</topic><topic>underground tunnel ventilation</topic><topic>Underground utilities</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Tong</creatorcontrib><creatorcontrib>Fan, Mingyue</creatorcontrib><creatorcontrib>Xu, Zijun</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Gu, Zhaolin</creatorcontrib><creatorcontrib>Luo, Xilian</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Buildings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Tong</au><au>Fan, Mingyue</au><au>Xu, Zijun</au><au>Li, Weijun</au><au>Gu, Zhaolin</au><au>Luo, Xilian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of Energy Recovery Potential in Urban Underground Utility Tunnels: A Case Study</atitle><jtitle>Buildings (Basel)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>14</volume><issue>10</issue><spage>3113</spage><pages>3113-</pages><issn>2075-5309</issn><eissn>2075-5309</eissn><abstract>Underground spaces contain abundant geothermal energy, which can be recovered for building ventilation, reducing energy consumption. However, current research lacks a comprehensive quantitative assessment of its energy recovery. This research evaluates the energy recovery potential of the Xingfu Forest Belt Urban Underground Utility Tunnels. Field experiments revealed a 7 °C temperature difference in winter and a 2.5 °C reduction during the summer-to-autumn transition. A computational fluid dynamics (CFD) model was developed to assess the impact of design and operational factors such as air exchange rates on outlet temperatures and heat exchange efficiency. The results indicate that at an air change rate of 0.5 h−1, the tunnel outlet temperature dropped by 10.5 °C. A 200 m tunnel transferred 8.7 × 1010 J of heat over 30 days, and a 6 m × 6 m cross-sectional area achieved 1.1 × 1011 J of total heat transfer. Increasing the air exchange rate and cross-sectional area reduces the inlet–outlet temperature difference while enhancing heat transfer capacity. However, the optimal buried depth should not exceed 8 m due to cost and safety considerations. This study demonstrates the potential of shallow geothermal energy as an eco-friendly and efficient solution for enhancing building ventilation systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/buildings14103113</doi><orcidid>https://orcid.org/0000-0003-1384-5531</orcidid><orcidid>https://orcid.org/0000-0002-1033-232X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-5309 |
ispartof | Buildings (Basel), 2024-10, Vol.14 (10), p.3113 |
issn | 2075-5309 2075-5309 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_570b9626520448b3b20e3447d2e939b3 |
source | Publicly Available Content Database |
subjects | Air temperature Analysis Architecture and energy conservation building energy efficiency Case studies CFD China Computational fluid dynamics Cooling Design factors Emissions Energy conservation Energy consumption Energy recovery Enthalpy Field tests Fluid dynamics Geothermal energy Geothermal power Heat exchange heat exchange efficiency Heat recovery systems Heat transfer Humidity Hydrodynamics Industrial plant emissions Money Roads & highways Sensors shallow geothermal energy Summer Temperature Temperature gradients Tunnels underground tunnel ventilation Underground utilities Ventilation |
title | Assessment of Energy Recovery Potential in Urban Underground Utility Tunnels: A Case Study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T10%3A25%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20Energy%20Recovery%20Potential%20in%20Urban%20Underground%20Utility%20Tunnels:%20A%20Case%20Study&rft.jtitle=Buildings%20(Basel)&rft.au=Wei,%20Tong&rft.date=2024-10-01&rft.volume=14&rft.issue=10&rft.spage=3113&rft.pages=3113-&rft.issn=2075-5309&rft.eissn=2075-5309&rft_id=info:doi/10.3390/buildings14103113&rft_dat=%3Cgale_doaj_%3EA814386876%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-f17cbe03358737fcf167103f7f3e8fee4e2e9e29350c52964a75eec08cabacb13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120610868&rft_id=info:pmid/&rft_galeid=A814386876&rfr_iscdi=true |