Loading…

Assessment of Energy Recovery Potential in Urban Underground Utility Tunnels: A Case Study

Underground spaces contain abundant geothermal energy, which can be recovered for building ventilation, reducing energy consumption. However, current research lacks a comprehensive quantitative assessment of its energy recovery. This research evaluates the energy recovery potential of the Xingfu For...

Full description

Saved in:
Bibliographic Details
Published in:Buildings (Basel) 2024-10, Vol.14 (10), p.3113
Main Authors: Wei, Tong, Fan, Mingyue, Xu, Zijun, Li, Weijun, Gu, Zhaolin, Luo, Xilian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c303t-f17cbe03358737fcf167103f7f3e8fee4e2e9e29350c52964a75eec08cabacb13
container_end_page
container_issue 10
container_start_page 3113
container_title Buildings (Basel)
container_volume 14
creator Wei, Tong
Fan, Mingyue
Xu, Zijun
Li, Weijun
Gu, Zhaolin
Luo, Xilian
description Underground spaces contain abundant geothermal energy, which can be recovered for building ventilation, reducing energy consumption. However, current research lacks a comprehensive quantitative assessment of its energy recovery. This research evaluates the energy recovery potential of the Xingfu Forest Belt Urban Underground Utility Tunnels. Field experiments revealed a 7 °C temperature difference in winter and a 2.5 °C reduction during the summer-to-autumn transition. A computational fluid dynamics (CFD) model was developed to assess the impact of design and operational factors such as air exchange rates on outlet temperatures and heat exchange efficiency. The results indicate that at an air change rate of 0.5 h−1, the tunnel outlet temperature dropped by 10.5 °C. A 200 m tunnel transferred 8.7 × 1010 J of heat over 30 days, and a 6 m × 6 m cross-sectional area achieved 1.1 × 1011 J of total heat transfer. Increasing the air exchange rate and cross-sectional area reduces the inlet–outlet temperature difference while enhancing heat transfer capacity. However, the optimal buried depth should not exceed 8 m due to cost and safety considerations. This study demonstrates the potential of shallow geothermal energy as an eco-friendly and efficient solution for enhancing building ventilation systems.
doi_str_mv 10.3390/buildings14103113
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_570b9626520448b3b20e3447d2e939b3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814386876</galeid><doaj_id>oai_doaj_org_article_570b9626520448b3b20e3447d2e939b3</doaj_id><sourcerecordid>A814386876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-f17cbe03358737fcf167103f7f3e8fee4e2e9e29350c52964a75eec08cabacb13</originalsourceid><addsrcrecordid>eNplUcFqHDEMHUoLDWk-IDdDz5valj2e6W1Z0jYQaGmzl1yM7ZEXL7N2ansK8_d1s6EUKoEkpKcnCXXdNaM3ACP9YJcwTyEeChOMAmPwqrvgVMmNBDq-_id-212VcqRNBsm5FBfd47YULOWEsZLkyW3EfFjJd3TpF-aVfEu1VYKZSYhkn61pNk4Nk9MSJ7KvYQ51JQ9LjDiXj2RLdqYg-VGXaX3XvfFmLnj14i-7_afbh92Xzf3Xz3e77f3GAYW68Uw5ixRADgqUd571ql3hlQccPKJAjiPyESR1ko-9MEoiOjo4Y42zDC67uzPvlMxRP-VwMnnVyQT9nEj5oE2uwc2opaJ27HkvORVisGA5RRBCTW0EjBYa1_sz11NOPxcsVR_TkmNbXwPjtGd06IeGujmjDqaRhuhTzcY1nfAUXIroQ8tvByagwVXfGti5weVUSkb_d01G9Z8X6v9eCL8BgrePmA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120610868</pqid></control><display><type>article</type><title>Assessment of Energy Recovery Potential in Urban Underground Utility Tunnels: A Case Study</title><source>Publicly Available Content Database</source><creator>Wei, Tong ; Fan, Mingyue ; Xu, Zijun ; Li, Weijun ; Gu, Zhaolin ; Luo, Xilian</creator><creatorcontrib>Wei, Tong ; Fan, Mingyue ; Xu, Zijun ; Li, Weijun ; Gu, Zhaolin ; Luo, Xilian</creatorcontrib><description>Underground spaces contain abundant geothermal energy, which can be recovered for building ventilation, reducing energy consumption. However, current research lacks a comprehensive quantitative assessment of its energy recovery. This research evaluates the energy recovery potential of the Xingfu Forest Belt Urban Underground Utility Tunnels. Field experiments revealed a 7 °C temperature difference in winter and a 2.5 °C reduction during the summer-to-autumn transition. A computational fluid dynamics (CFD) model was developed to assess the impact of design and operational factors such as air exchange rates on outlet temperatures and heat exchange efficiency. The results indicate that at an air change rate of 0.5 h−1, the tunnel outlet temperature dropped by 10.5 °C. A 200 m tunnel transferred 8.7 × 1010 J of heat over 30 days, and a 6 m × 6 m cross-sectional area achieved 1.1 × 1011 J of total heat transfer. Increasing the air exchange rate and cross-sectional area reduces the inlet–outlet temperature difference while enhancing heat transfer capacity. However, the optimal buried depth should not exceed 8 m due to cost and safety considerations. This study demonstrates the potential of shallow geothermal energy as an eco-friendly and efficient solution for enhancing building ventilation systems.</description><identifier>ISSN: 2075-5309</identifier><identifier>EISSN: 2075-5309</identifier><identifier>DOI: 10.3390/buildings14103113</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air temperature ; Analysis ; Architecture and energy conservation ; building energy efficiency ; Case studies ; CFD ; China ; Computational fluid dynamics ; Cooling ; Design factors ; Emissions ; Energy conservation ; Energy consumption ; Energy recovery ; Enthalpy ; Field tests ; Fluid dynamics ; Geothermal energy ; Geothermal power ; Heat exchange ; heat exchange efficiency ; Heat recovery systems ; Heat transfer ; Humidity ; Hydrodynamics ; Industrial plant emissions ; Money ; Roads &amp; highways ; Sensors ; shallow geothermal energy ; Summer ; Temperature ; Temperature gradients ; Tunnels ; underground tunnel ventilation ; Underground utilities ; Ventilation</subject><ispartof>Buildings (Basel), 2024-10, Vol.14 (10), p.3113</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-f17cbe03358737fcf167103f7f3e8fee4e2e9e29350c52964a75eec08cabacb13</cites><orcidid>0000-0003-1384-5531 ; 0000-0002-1033-232X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120610868/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120610868?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25728,27898,27899,36986,44563,75093</link.rule.ids></links><search><creatorcontrib>Wei, Tong</creatorcontrib><creatorcontrib>Fan, Mingyue</creatorcontrib><creatorcontrib>Xu, Zijun</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Gu, Zhaolin</creatorcontrib><creatorcontrib>Luo, Xilian</creatorcontrib><title>Assessment of Energy Recovery Potential in Urban Underground Utility Tunnels: A Case Study</title><title>Buildings (Basel)</title><description>Underground spaces contain abundant geothermal energy, which can be recovered for building ventilation, reducing energy consumption. However, current research lacks a comprehensive quantitative assessment of its energy recovery. This research evaluates the energy recovery potential of the Xingfu Forest Belt Urban Underground Utility Tunnels. Field experiments revealed a 7 °C temperature difference in winter and a 2.5 °C reduction during the summer-to-autumn transition. A computational fluid dynamics (CFD) model was developed to assess the impact of design and operational factors such as air exchange rates on outlet temperatures and heat exchange efficiency. The results indicate that at an air change rate of 0.5 h−1, the tunnel outlet temperature dropped by 10.5 °C. A 200 m tunnel transferred 8.7 × 1010 J of heat over 30 days, and a 6 m × 6 m cross-sectional area achieved 1.1 × 1011 J of total heat transfer. Increasing the air exchange rate and cross-sectional area reduces the inlet–outlet temperature difference while enhancing heat transfer capacity. However, the optimal buried depth should not exceed 8 m due to cost and safety considerations. This study demonstrates the potential of shallow geothermal energy as an eco-friendly and efficient solution for enhancing building ventilation systems.</description><subject>Air temperature</subject><subject>Analysis</subject><subject>Architecture and energy conservation</subject><subject>building energy efficiency</subject><subject>Case studies</subject><subject>CFD</subject><subject>China</subject><subject>Computational fluid dynamics</subject><subject>Cooling</subject><subject>Design factors</subject><subject>Emissions</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy recovery</subject><subject>Enthalpy</subject><subject>Field tests</subject><subject>Fluid dynamics</subject><subject>Geothermal energy</subject><subject>Geothermal power</subject><subject>Heat exchange</subject><subject>heat exchange efficiency</subject><subject>Heat recovery systems</subject><subject>Heat transfer</subject><subject>Humidity</subject><subject>Hydrodynamics</subject><subject>Industrial plant emissions</subject><subject>Money</subject><subject>Roads &amp; highways</subject><subject>Sensors</subject><subject>shallow geothermal energy</subject><subject>Summer</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Tunnels</subject><subject>underground tunnel ventilation</subject><subject>Underground utilities</subject><subject>Ventilation</subject><issn>2075-5309</issn><issn>2075-5309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplUcFqHDEMHUoLDWk-IDdDz5valj2e6W1Z0jYQaGmzl1yM7ZEXL7N2ansK8_d1s6EUKoEkpKcnCXXdNaM3ACP9YJcwTyEeChOMAmPwqrvgVMmNBDq-_id-212VcqRNBsm5FBfd47YULOWEsZLkyW3EfFjJd3TpF-aVfEu1VYKZSYhkn61pNk4Nk9MSJ7KvYQ51JQ9LjDiXj2RLdqYg-VGXaX3XvfFmLnj14i-7_afbh92Xzf3Xz3e77f3GAYW68Uw5ixRADgqUd571ql3hlQccPKJAjiPyESR1ko-9MEoiOjo4Y42zDC67uzPvlMxRP-VwMnnVyQT9nEj5oE2uwc2opaJ27HkvORVisGA5RRBCTW0EjBYa1_sz11NOPxcsVR_TkmNbXwPjtGd06IeGujmjDqaRhuhTzcY1nfAUXIroQ8tvByagwVXfGti5weVUSkb_d01G9Z8X6v9eCL8BgrePmA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Wei, Tong</creator><creator>Fan, Mingyue</creator><creator>Xu, Zijun</creator><creator>Li, Weijun</creator><creator>Gu, Zhaolin</creator><creator>Luo, Xilian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1384-5531</orcidid><orcidid>https://orcid.org/0000-0002-1033-232X</orcidid></search><sort><creationdate>20241001</creationdate><title>Assessment of Energy Recovery Potential in Urban Underground Utility Tunnels: A Case Study</title><author>Wei, Tong ; Fan, Mingyue ; Xu, Zijun ; Li, Weijun ; Gu, Zhaolin ; Luo, Xilian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-f17cbe03358737fcf167103f7f3e8fee4e2e9e29350c52964a75eec08cabacb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air temperature</topic><topic>Analysis</topic><topic>Architecture and energy conservation</topic><topic>building energy efficiency</topic><topic>Case studies</topic><topic>CFD</topic><topic>China</topic><topic>Computational fluid dynamics</topic><topic>Cooling</topic><topic>Design factors</topic><topic>Emissions</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy recovery</topic><topic>Enthalpy</topic><topic>Field tests</topic><topic>Fluid dynamics</topic><topic>Geothermal energy</topic><topic>Geothermal power</topic><topic>Heat exchange</topic><topic>heat exchange efficiency</topic><topic>Heat recovery systems</topic><topic>Heat transfer</topic><topic>Humidity</topic><topic>Hydrodynamics</topic><topic>Industrial plant emissions</topic><topic>Money</topic><topic>Roads &amp; highways</topic><topic>Sensors</topic><topic>shallow geothermal energy</topic><topic>Summer</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Tunnels</topic><topic>underground tunnel ventilation</topic><topic>Underground utilities</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Tong</creatorcontrib><creatorcontrib>Fan, Mingyue</creatorcontrib><creatorcontrib>Xu, Zijun</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Gu, Zhaolin</creatorcontrib><creatorcontrib>Luo, Xilian</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Buildings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Tong</au><au>Fan, Mingyue</au><au>Xu, Zijun</au><au>Li, Weijun</au><au>Gu, Zhaolin</au><au>Luo, Xilian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of Energy Recovery Potential in Urban Underground Utility Tunnels: A Case Study</atitle><jtitle>Buildings (Basel)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>14</volume><issue>10</issue><spage>3113</spage><pages>3113-</pages><issn>2075-5309</issn><eissn>2075-5309</eissn><abstract>Underground spaces contain abundant geothermal energy, which can be recovered for building ventilation, reducing energy consumption. However, current research lacks a comprehensive quantitative assessment of its energy recovery. This research evaluates the energy recovery potential of the Xingfu Forest Belt Urban Underground Utility Tunnels. Field experiments revealed a 7 °C temperature difference in winter and a 2.5 °C reduction during the summer-to-autumn transition. A computational fluid dynamics (CFD) model was developed to assess the impact of design and operational factors such as air exchange rates on outlet temperatures and heat exchange efficiency. The results indicate that at an air change rate of 0.5 h−1, the tunnel outlet temperature dropped by 10.5 °C. A 200 m tunnel transferred 8.7 × 1010 J of heat over 30 days, and a 6 m × 6 m cross-sectional area achieved 1.1 × 1011 J of total heat transfer. Increasing the air exchange rate and cross-sectional area reduces the inlet–outlet temperature difference while enhancing heat transfer capacity. However, the optimal buried depth should not exceed 8 m due to cost and safety considerations. This study demonstrates the potential of shallow geothermal energy as an eco-friendly and efficient solution for enhancing building ventilation systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/buildings14103113</doi><orcidid>https://orcid.org/0000-0003-1384-5531</orcidid><orcidid>https://orcid.org/0000-0002-1033-232X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-5309
ispartof Buildings (Basel), 2024-10, Vol.14 (10), p.3113
issn 2075-5309
2075-5309
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_570b9626520448b3b20e3447d2e939b3
source Publicly Available Content Database
subjects Air temperature
Analysis
Architecture and energy conservation
building energy efficiency
Case studies
CFD
China
Computational fluid dynamics
Cooling
Design factors
Emissions
Energy conservation
Energy consumption
Energy recovery
Enthalpy
Field tests
Fluid dynamics
Geothermal energy
Geothermal power
Heat exchange
heat exchange efficiency
Heat recovery systems
Heat transfer
Humidity
Hydrodynamics
Industrial plant emissions
Money
Roads & highways
Sensors
shallow geothermal energy
Summer
Temperature
Temperature gradients
Tunnels
underground tunnel ventilation
Underground utilities
Ventilation
title Assessment of Energy Recovery Potential in Urban Underground Utility Tunnels: A Case Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T10%3A25%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20Energy%20Recovery%20Potential%20in%20Urban%20Underground%20Utility%20Tunnels:%20A%20Case%20Study&rft.jtitle=Buildings%20(Basel)&rft.au=Wei,%20Tong&rft.date=2024-10-01&rft.volume=14&rft.issue=10&rft.spage=3113&rft.pages=3113-&rft.issn=2075-5309&rft.eissn=2075-5309&rft_id=info:doi/10.3390/buildings14103113&rft_dat=%3Cgale_doaj_%3EA814386876%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-f17cbe03358737fcf167103f7f3e8fee4e2e9e29350c52964a75eec08cabacb13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120610868&rft_id=info:pmid/&rft_galeid=A814386876&rfr_iscdi=true