Loading…

Self-Similar Solutions of the Compressible Flow in One-Space Dimension

For the isentropic compressible fluids in one-space dimension, we prove that the Navier-Stokes equations with density-dependent viscosity have neither forward nor backward self-similar strong solutions with finite kinetic energy. Moreover, we obtain the same result for the nonisentropic compressible...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Applied Mathematics 2013-01, Vol.2013 (2013), p.915-919-087
Main Authors: Li, Tailong, Xie, Jian, Chen, Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a661t-a68dafc668fe08fa803942985bc2861e575c312b191fc836b1becb7efcbce6f13
cites cdi_FETCH-LOGICAL-a661t-a68dafc668fe08fa803942985bc2861e575c312b191fc836b1becb7efcbce6f13
container_end_page 919-087
container_issue 2013
container_start_page 915
container_title Journal of Applied Mathematics
container_volume 2013
creator Li, Tailong
Xie, Jian
Chen, Ping
description For the isentropic compressible fluids in one-space dimension, we prove that the Navier-Stokes equations with density-dependent viscosity have neither forward nor backward self-similar strong solutions with finite kinetic energy. Moreover, we obtain the same result for the nonisentropic compressible gas flow, that is, for the fluid dynamics of the Navier-Stokes equations coupled with a transport equation of entropy. These results generalize those in Guo and Jiang's work (2006) where the one-dimensional compressible fluids with constant viscosity are considered.
doi_str_mv 10.1155/2013/194704
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_570be1dec00e47f8ae2a49cf9b79622c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A376853119</galeid><airiti_id>P20160908001_201312_201609120001_201609120001_915_919_087</airiti_id><doaj_id>oai_doaj_org_article_570be1dec00e47f8ae2a49cf9b79622c</doaj_id><sourcerecordid>A376853119</sourcerecordid><originalsourceid>FETCH-LOGICAL-a661t-a68dafc668fe08fa803942985bc2861e575c312b191fc836b1becb7efcbce6f13</originalsourceid><addsrcrecordid>eNqFkc1r3DAQxU1poWnaU88FH0uLkxnb-ro1bLptIJDANtCbkOVRosW2tpKX0P--Srxs6akIfb35zWPgFcV7hDNExs5rwOYcVSugfVGcIJeiAmjrl_mNCJVg4ufr4k1KW4AamMKTYr2hwVUbP_rBxHIThv3sw5TK4Mr5gcpVGHeRUvLdQOV6CI-ln8qbiarNzlgqL_1IU8oNb4tXzgyJ3h3u0-Ju_fXH6nt1ffPtanVxXRnOcc6n7I2znEtHIJ2R0Ki2VpJ1tpYciQlmG6w7VOisbHiHHdlOkLOdJe6wOS2uFt8-mK3eRT-a-FsH4_WzEOK9NnH2diDNBHSEPVkAaoWThmrTKutUJxSva5u9vixeuxi2ZGfa28H3_5iu7q4P6uHamlFjnlmCRCGyxcejxa89pVmPPlkaBjNR2CeNXCBrGHKe0bMFvTd5OD-5MEdj8-pp9DZM5HzWLxrBJWsQVW74vDTYGFKK5I6TIeintPVT2npJO9OfFvrBT7159P-BPywwZYScOcJtHraRuX671I2PfvZ6G_ZxyrHq2-zCQYEEwGdHrPUiYQ0H7e9HIctbaZCi-QPk3Mfu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671535166</pqid></control><display><type>article</type><title>Self-Similar Solutions of the Compressible Flow in One-Space Dimension</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>IngentaConnect Journals</source><creator>Li, Tailong ; Xie, Jian ; Chen, Ping</creator><contributor>Shen, Hui-Shen</contributor><creatorcontrib>Li, Tailong ; Xie, Jian ; Chen, Ping ; Shen, Hui-Shen</creatorcontrib><description>For the isentropic compressible fluids in one-space dimension, we prove that the Navier-Stokes equations with density-dependent viscosity have neither forward nor backward self-similar strong solutions with finite kinetic energy. Moreover, we obtain the same result for the nonisentropic compressible gas flow, that is, for the fluid dynamics of the Navier-Stokes equations coupled with a transport equation of entropy. These results generalize those in Guo and Jiang's work (2006) where the one-dimensional compressible fluids with constant viscosity are considered.</description><identifier>ISSN: 1110-757X</identifier><identifier>EISSN: 1687-0042</identifier><identifier>DOI: 10.1155/2013/194704</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Compressible fluids ; Computational fluid dynamics ; Entropy ; Kinetic energy ; Mathematical analysis ; Mathematical research ; Navier-Stokes equations ; Self-similarity ; Transport theory ; Viscosity</subject><ispartof>Journal of Applied Mathematics, 2013-01, Vol.2013 (2013), p.915-919-087</ispartof><rights>Copyright © 2013 Tailong Li et al.</rights><rights>COPYRIGHT 2013 John Wiley &amp; Sons, Inc.</rights><rights>Copyright 2013 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a661t-a68dafc668fe08fa803942985bc2861e575c312b191fc836b1becb7efcbce6f13</citedby><cites>FETCH-LOGICAL-a661t-a68dafc668fe08fa803942985bc2861e575c312b191fc836b1becb7efcbce6f13</cites><orcidid>0000-0002-9218-9706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925,37013</link.rule.ids></links><search><contributor>Shen, Hui-Shen</contributor><creatorcontrib>Li, Tailong</creatorcontrib><creatorcontrib>Xie, Jian</creatorcontrib><creatorcontrib>Chen, Ping</creatorcontrib><title>Self-Similar Solutions of the Compressible Flow in One-Space Dimension</title><title>Journal of Applied Mathematics</title><description>For the isentropic compressible fluids in one-space dimension, we prove that the Navier-Stokes equations with density-dependent viscosity have neither forward nor backward self-similar strong solutions with finite kinetic energy. Moreover, we obtain the same result for the nonisentropic compressible gas flow, that is, for the fluid dynamics of the Navier-Stokes equations coupled with a transport equation of entropy. These results generalize those in Guo and Jiang's work (2006) where the one-dimensional compressible fluids with constant viscosity are considered.</description><subject>Compressible fluids</subject><subject>Computational fluid dynamics</subject><subject>Entropy</subject><subject>Kinetic energy</subject><subject>Mathematical analysis</subject><subject>Mathematical research</subject><subject>Navier-Stokes equations</subject><subject>Self-similarity</subject><subject>Transport theory</subject><subject>Viscosity</subject><issn>1110-757X</issn><issn>1687-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkc1r3DAQxU1poWnaU88FH0uLkxnb-ro1bLptIJDANtCbkOVRosW2tpKX0P--Srxs6akIfb35zWPgFcV7hDNExs5rwOYcVSugfVGcIJeiAmjrl_mNCJVg4ufr4k1KW4AamMKTYr2hwVUbP_rBxHIThv3sw5TK4Mr5gcpVGHeRUvLdQOV6CI-ln8qbiarNzlgqL_1IU8oNb4tXzgyJ3h3u0-Ju_fXH6nt1ffPtanVxXRnOcc6n7I2znEtHIJ2R0Ki2VpJ1tpYciQlmG6w7VOisbHiHHdlOkLOdJe6wOS2uFt8-mK3eRT-a-FsH4_WzEOK9NnH2diDNBHSEPVkAaoWThmrTKutUJxSva5u9vixeuxi2ZGfa28H3_5iu7q4P6uHamlFjnlmCRCGyxcejxa89pVmPPlkaBjNR2CeNXCBrGHKe0bMFvTd5OD-5MEdj8-pp9DZM5HzWLxrBJWsQVW74vDTYGFKK5I6TIeintPVT2npJO9OfFvrBT7159P-BPywwZYScOcJtHraRuX671I2PfvZ6G_ZxyrHq2-zCQYEEwGdHrPUiYQ0H7e9HIctbaZCi-QPk3Mfu</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Li, Tailong</creator><creator>Xie, Jian</creator><creator>Chen, Ping</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9218-9706</orcidid></search><sort><creationdate>20130101</creationdate><title>Self-Similar Solutions of the Compressible Flow in One-Space Dimension</title><author>Li, Tailong ; Xie, Jian ; Chen, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a661t-a68dafc668fe08fa803942985bc2861e575c312b191fc836b1becb7efcbce6f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Compressible fluids</topic><topic>Computational fluid dynamics</topic><topic>Entropy</topic><topic>Kinetic energy</topic><topic>Mathematical analysis</topic><topic>Mathematical research</topic><topic>Navier-Stokes equations</topic><topic>Self-similarity</topic><topic>Transport theory</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tailong</creatorcontrib><creatorcontrib>Xie, Jian</creatorcontrib><creatorcontrib>Chen, Ping</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tailong</au><au>Xie, Jian</au><au>Chen, Ping</au><au>Shen, Hui-Shen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Similar Solutions of the Compressible Flow in One-Space Dimension</atitle><jtitle>Journal of Applied Mathematics</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>915</spage><epage>919-087</epage><pages>915-919-087</pages><issn>1110-757X</issn><eissn>1687-0042</eissn><abstract>For the isentropic compressible fluids in one-space dimension, we prove that the Navier-Stokes equations with density-dependent viscosity have neither forward nor backward self-similar strong solutions with finite kinetic energy. Moreover, we obtain the same result for the nonisentropic compressible gas flow, that is, for the fluid dynamics of the Navier-Stokes equations coupled with a transport equation of entropy. These results generalize those in Guo and Jiang's work (2006) where the one-dimensional compressible fluids with constant viscosity are considered.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2013/194704</doi><orcidid>https://orcid.org/0000-0002-9218-9706</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-757X
ispartof Journal of Applied Mathematics, 2013-01, Vol.2013 (2013), p.915-919-087
issn 1110-757X
1687-0042
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_570be1dec00e47f8ae2a49cf9b79622c
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Open Access: Wiley-Blackwell Open Access Journals; IngentaConnect Journals
subjects Compressible fluids
Computational fluid dynamics
Entropy
Kinetic energy
Mathematical analysis
Mathematical research
Navier-Stokes equations
Self-similarity
Transport theory
Viscosity
title Self-Similar Solutions of the Compressible Flow in One-Space Dimension
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A48%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Similar%20Solutions%20of%20the%20Compressible%20Flow%20in%20One-Space%20Dimension&rft.jtitle=Journal%20of%20Applied%20Mathematics&rft.au=Li,%20Tailong&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=915&rft.epage=919-087&rft.pages=915-919-087&rft.issn=1110-757X&rft.eissn=1687-0042&rft_id=info:doi/10.1155/2013/194704&rft_dat=%3Cgale_doaj_%3EA376853119%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a661t-a68dafc668fe08fa803942985bc2861e575c312b191fc836b1becb7efcbce6f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671535166&rft_id=info:pmid/&rft_galeid=A376853119&rft_airiti_id=P20160908001_201312_201609120001_201609120001_915_919_087&rfr_iscdi=true