Loading…

Technical Reviews of Power Loss Optimization in High-Frequency PSiPs—In Relation to Power Switches and Power Inductors

Power losses of switches and inductors are consistent challenges that hinder the development of high-frequency power supply in package (PSiP). This paper investigates the roadmap for power loss optimizations of switches and inductors in high-frequency PSiPs. Firstly, a size and parallel quantity des...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-12, Vol.13 (24), p.13166
Main Authors: Wang, Yinyu, Zhang, Desheng, Lu, Liangliang, Huang, Baoqiang, Xu, Haoran, Min, Run, Zou, Xuecheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Power losses of switches and inductors are consistent challenges that hinder the development of high-frequency power supply in package (PSiP). This paper investigates the roadmap for power loss optimizations of switches and inductors in high-frequency PSiPs. Firstly, a size and parallel quantity design method to reduce power loss in an integrated Si LDMOSFET is provided with comprehensive consideration of switching frequency and power levels. Secondly, quality factors of different air-core inductors are analyzed with consideration of geometric parameters and skin effect, which provides the winding structure optimization to reduce power losses. The power losses of the integrated Si LDMOSFET and air-core inductors are both reduced to less than 10% of the output power at 1~100 MHz switching frequency and 0.1~10 W power level. Finally, based on the above optimizations, power losses of switches and inductors are calculated with switching frequency and power level. Combining the calculated results, this paper predicts the efficiency boundaries of PSiPs. Upon efficiency normalization with consideration of input and output voltage levels, all the predictions are consistent with the published literature. The efficiency predication error is 1~15% at 1~100 MHz switching frequency and 0.1~10 W power level. The above power loss optimizations improve the efficiency, which provides potential roadmaps for achieving high-frequency PSiPs.
ISSN:2076-3417
2076-3417
DOI:10.3390/app132413166