Loading…
Mechanical and Corrosion Behaviour in Simulated Body Fluid of As-Fabricated 3D Porous L-PBF 316L Stainless Steel Structures for Biomedical Implants
Laser powder bed fusion (L-PBF) is one of the most promising additive manufacturing technologies for creating customised 316L Stainless Steel (SS) implants with biomimetic characteristics, controlled porosity, and optimal structural and functional properties. However, the behaviour of as-fabricated...
Saved in:
Published in: | Journal of functional biomaterials 2024-10, Vol.15 (10), p.313 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-e01fa9bdb37bad468ed9f41a329497ef9e99dee67e7f188310f6bc4c5edae43c3 |
container_end_page | |
container_issue | 10 |
container_start_page | 313 |
container_title | Journal of functional biomaterials |
container_volume | 15 |
creator | Nogueira, Pedro Magrinho, João Reis, Luis de Deus, Augusto Moita Silva, Maria Beatriz Lopes, Pedro Oliveira, Luís Castela, António Cláudio, Ricardo Alves, Jorge L Vaz, Maria Fátima Carmezim, Maria Santos, Catarina |
description | Laser powder bed fusion (L-PBF) is one of the most promising additive manufacturing technologies for creating customised 316L Stainless Steel (SS) implants with biomimetic characteristics, controlled porosity, and optimal structural and functional properties. However, the behaviour of as-fabricated 3D 316L SS structures without any surface finishing in environments that simulate body fluids remains largely unknown. To address this knowledge gap, the present study investigates the surface characteristics, the internal porosity, the corrosion in simulated body fluid (SBF), and the mechanical properties of as-fabricated 316L SS structures manufactured by L-PBF with rhombitruncated cuboctahedron (RTCO) unit cells with two distinct relative densities (10 and 35%). The microstructural analysis confirmed that the RTCO structure has a pure austenitic phase with a roughness of ~20 µm and a fine cellular morphology. The micro-CT revealed the presence of keyholes and a lack of fusion pores in both RTCO structures. Despite the difference in the internal porosity, the mechanical properties of both structures remain within the range of bone tissue and in line with the Gibson and Ashby model. Additionally, the as-fabricated RTCO structures demonstrated passive corrosion behaviour in the SBF solution. Thus, as-fabricated porous structures are promising biomaterials for implants due to their suitable surface roughness, mechanical properties, and corrosion resistance, facilitating bone tissue growth. |
doi_str_mv | 10.3390/jfb15100313 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_575b8f9c5ed84b739fdfbca0b3d39175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_575b8f9c5ed84b739fdfbca0b3d39175</doaj_id><sourcerecordid>3120675576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-e01fa9bdb37bad468ed9f41a329497ef9e99dee67e7f188310f6bc4c5edae43c3</originalsourceid><addsrcrecordid>eNpdUk1vEzEQXSEQrUpP3JElLkhowV571-sTakJTIgVRqXC2_DFuHDnrYO9W6u_gD-M0pUrxwR553jx73puqekvwJ0oF_rxxmrQEY0roi-q0wVzUTPT05VF8Up3nvMFldbhvCHtdnVDB2qYj5LT68x3MWg3eqIDUYNE8phSzjwOawVrd-Tgl5Ad047dTUCNYNIv2Hi3C5C2KDl3keqF0KuX7HP2KrmOKU0ar-nq2QJR0K3QzKj8EyLlEAKHsaTLjlCAjFxOa-bgF-_D-crsLahjzm-qVUyHD-eN5Vv1aXP6cf6tXP66W84tVbWjHxhowcUpoqynXyrKuByscI4o2ggkOToAQFqDjwB3pe0qw67RhpgWrgFFDz6rlgddGtZG75Lcq3cuovHy4iOlWqjR6E0C2vNW9E_vanmlOhbNOG4U1tVQQ3hauLweu3aRLPwaGManwjPR5ZvBreRvvJCEt7osVheHDI0OKvyfIo9z6bCAUSaBIKilpioGEkK5A3_8H3RSfhqLVAcXblu9RHw8oUxzNCdzTbwiW--GRR8NT0O-OG3jC_hsV-hcJsMCB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120675576</pqid></control><display><type>article</type><title>Mechanical and Corrosion Behaviour in Simulated Body Fluid of As-Fabricated 3D Porous L-PBF 316L Stainless Steel Structures for Biomedical Implants</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Nogueira, Pedro ; Magrinho, João ; Reis, Luis ; de Deus, Augusto Moita ; Silva, Maria Beatriz ; Lopes, Pedro ; Oliveira, Luís ; Castela, António ; Cláudio, Ricardo ; Alves, Jorge L ; Vaz, Maria Fátima ; Carmezim, Maria ; Santos, Catarina</creator><creatorcontrib>Nogueira, Pedro ; Magrinho, João ; Reis, Luis ; de Deus, Augusto Moita ; Silva, Maria Beatriz ; Lopes, Pedro ; Oliveira, Luís ; Castela, António ; Cláudio, Ricardo ; Alves, Jorge L ; Vaz, Maria Fátima ; Carmezim, Maria ; Santos, Catarina</creatorcontrib><description>Laser powder bed fusion (L-PBF) is one of the most promising additive manufacturing technologies for creating customised 316L Stainless Steel (SS) implants with biomimetic characteristics, controlled porosity, and optimal structural and functional properties. However, the behaviour of as-fabricated 3D 316L SS structures without any surface finishing in environments that simulate body fluids remains largely unknown. To address this knowledge gap, the present study investigates the surface characteristics, the internal porosity, the corrosion in simulated body fluid (SBF), and the mechanical properties of as-fabricated 316L SS structures manufactured by L-PBF with rhombitruncated cuboctahedron (RTCO) unit cells with two distinct relative densities (10 and 35%). The microstructural analysis confirmed that the RTCO structure has a pure austenitic phase with a roughness of ~20 µm and a fine cellular morphology. The micro-CT revealed the presence of keyholes and a lack of fusion pores in both RTCO structures. Despite the difference in the internal porosity, the mechanical properties of both structures remain within the range of bone tissue and in line with the Gibson and Ashby model. Additionally, the as-fabricated RTCO structures demonstrated passive corrosion behaviour in the SBF solution. Thus, as-fabricated porous structures are promising biomaterials for implants due to their suitable surface roughness, mechanical properties, and corrosion resistance, facilitating bone tissue growth.</description><identifier>ISSN: 2079-4983</identifier><identifier>EISSN: 2079-4983</identifier><identifier>DOI: 10.3390/jfb15100313</identifier><identifier>PMID: 39452611</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>316L stainless steel ; Additive manufacturing ; Austenitic stainless steels ; Biocompatibility ; Biomaterials ; Biomedical materials ; Biomimetics ; Body fluids ; Bone biomaterials ; Bone growth ; Bone implants ; Bones ; Cellular structure ; Computed tomography ; Corrosion ; Corrosion resistance ; Corrosion tests ; Density ; Design ; laser powder bed fusion ; Lasers ; Mechanical properties ; micro-CT porosity ; Microstructural analysis ; Porosity ; Powder beds ; SBF ; Stainless steel ; Structure-function relationships ; Surface finishing ; Surface properties ; Surface roughness ; Surgical implants ; Transplants & implants</subject><ispartof>Journal of functional biomaterials, 2024-10, Vol.15 (10), p.313</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c364t-e01fa9bdb37bad468ed9f41a329497ef9e99dee67e7f188310f6bc4c5edae43c3</cites><orcidid>0009-0001-5442-5632 ; 0000-0001-9848-9569 ; 0000-0002-9327-9092 ; 0000-0003-2180-0376 ; 0000-0002-4773-1957 ; 0000-0003-1629-523X ; 0000-0002-0451-6245 ; 0000-0002-5284-8391 ; 0000-0002-0110-187X ; 0000-0002-7376-8104 ; 0000-0002-8567-0032 ; 0000-0002-4848-2614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120675576/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120675576?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39452611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nogueira, Pedro</creatorcontrib><creatorcontrib>Magrinho, João</creatorcontrib><creatorcontrib>Reis, Luis</creatorcontrib><creatorcontrib>de Deus, Augusto Moita</creatorcontrib><creatorcontrib>Silva, Maria Beatriz</creatorcontrib><creatorcontrib>Lopes, Pedro</creatorcontrib><creatorcontrib>Oliveira, Luís</creatorcontrib><creatorcontrib>Castela, António</creatorcontrib><creatorcontrib>Cláudio, Ricardo</creatorcontrib><creatorcontrib>Alves, Jorge L</creatorcontrib><creatorcontrib>Vaz, Maria Fátima</creatorcontrib><creatorcontrib>Carmezim, Maria</creatorcontrib><creatorcontrib>Santos, Catarina</creatorcontrib><title>Mechanical and Corrosion Behaviour in Simulated Body Fluid of As-Fabricated 3D Porous L-PBF 316L Stainless Steel Structures for Biomedical Implants</title><title>Journal of functional biomaterials</title><addtitle>J Funct Biomater</addtitle><description>Laser powder bed fusion (L-PBF) is one of the most promising additive manufacturing technologies for creating customised 316L Stainless Steel (SS) implants with biomimetic characteristics, controlled porosity, and optimal structural and functional properties. However, the behaviour of as-fabricated 3D 316L SS structures without any surface finishing in environments that simulate body fluids remains largely unknown. To address this knowledge gap, the present study investigates the surface characteristics, the internal porosity, the corrosion in simulated body fluid (SBF), and the mechanical properties of as-fabricated 316L SS structures manufactured by L-PBF with rhombitruncated cuboctahedron (RTCO) unit cells with two distinct relative densities (10 and 35%). The microstructural analysis confirmed that the RTCO structure has a pure austenitic phase with a roughness of ~20 µm and a fine cellular morphology. The micro-CT revealed the presence of keyholes and a lack of fusion pores in both RTCO structures. Despite the difference in the internal porosity, the mechanical properties of both structures remain within the range of bone tissue and in line with the Gibson and Ashby model. Additionally, the as-fabricated RTCO structures demonstrated passive corrosion behaviour in the SBF solution. Thus, as-fabricated porous structures are promising biomaterials for implants due to their suitable surface roughness, mechanical properties, and corrosion resistance, facilitating bone tissue growth.</description><subject>316L stainless steel</subject><subject>Additive manufacturing</subject><subject>Austenitic stainless steels</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>Body fluids</subject><subject>Bone biomaterials</subject><subject>Bone growth</subject><subject>Bone implants</subject><subject>Bones</subject><subject>Cellular structure</subject><subject>Computed tomography</subject><subject>Corrosion</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Density</subject><subject>Design</subject><subject>laser powder bed fusion</subject><subject>Lasers</subject><subject>Mechanical properties</subject><subject>micro-CT porosity</subject><subject>Microstructural analysis</subject><subject>Porosity</subject><subject>Powder beds</subject><subject>SBF</subject><subject>Stainless steel</subject><subject>Structure-function relationships</subject><subject>Surface finishing</subject><subject>Surface properties</subject><subject>Surface roughness</subject><subject>Surgical implants</subject><subject>Transplants & implants</subject><issn>2079-4983</issn><issn>2079-4983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUk1vEzEQXSEQrUpP3JElLkhowV571-sTakJTIgVRqXC2_DFuHDnrYO9W6u_gD-M0pUrxwR553jx73puqekvwJ0oF_rxxmrQEY0roi-q0wVzUTPT05VF8Up3nvMFldbhvCHtdnVDB2qYj5LT68x3MWg3eqIDUYNE8phSzjwOawVrd-Tgl5Ad047dTUCNYNIv2Hi3C5C2KDl3keqF0KuX7HP2KrmOKU0ar-nq2QJR0K3QzKj8EyLlEAKHsaTLjlCAjFxOa-bgF-_D-crsLahjzm-qVUyHD-eN5Vv1aXP6cf6tXP66W84tVbWjHxhowcUpoqynXyrKuByscI4o2ggkOToAQFqDjwB3pe0qw67RhpgWrgFFDz6rlgddGtZG75Lcq3cuovHy4iOlWqjR6E0C2vNW9E_vanmlOhbNOG4U1tVQQ3hauLweu3aRLPwaGManwjPR5ZvBreRvvJCEt7osVheHDI0OKvyfIo9z6bCAUSaBIKilpioGEkK5A3_8H3RSfhqLVAcXblu9RHw8oUxzNCdzTbwiW--GRR8NT0O-OG3jC_hsV-hcJsMCB</recordid><startdate>20241021</startdate><enddate>20241021</enddate><creator>Nogueira, Pedro</creator><creator>Magrinho, João</creator><creator>Reis, Luis</creator><creator>de Deus, Augusto Moita</creator><creator>Silva, Maria Beatriz</creator><creator>Lopes, Pedro</creator><creator>Oliveira, Luís</creator><creator>Castela, António</creator><creator>Cláudio, Ricardo</creator><creator>Alves, Jorge L</creator><creator>Vaz, Maria Fátima</creator><creator>Carmezim, Maria</creator><creator>Santos, Catarina</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-5442-5632</orcidid><orcidid>https://orcid.org/0000-0001-9848-9569</orcidid><orcidid>https://orcid.org/0000-0002-9327-9092</orcidid><orcidid>https://orcid.org/0000-0003-2180-0376</orcidid><orcidid>https://orcid.org/0000-0002-4773-1957</orcidid><orcidid>https://orcid.org/0000-0003-1629-523X</orcidid><orcidid>https://orcid.org/0000-0002-0451-6245</orcidid><orcidid>https://orcid.org/0000-0002-5284-8391</orcidid><orcidid>https://orcid.org/0000-0002-0110-187X</orcidid><orcidid>https://orcid.org/0000-0002-7376-8104</orcidid><orcidid>https://orcid.org/0000-0002-8567-0032</orcidid><orcidid>https://orcid.org/0000-0002-4848-2614</orcidid></search><sort><creationdate>20241021</creationdate><title>Mechanical and Corrosion Behaviour in Simulated Body Fluid of As-Fabricated 3D Porous L-PBF 316L Stainless Steel Structures for Biomedical Implants</title><author>Nogueira, Pedro ; Magrinho, João ; Reis, Luis ; de Deus, Augusto Moita ; Silva, Maria Beatriz ; Lopes, Pedro ; Oliveira, Luís ; Castela, António ; Cláudio, Ricardo ; Alves, Jorge L ; Vaz, Maria Fátima ; Carmezim, Maria ; Santos, Catarina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-e01fa9bdb37bad468ed9f41a329497ef9e99dee67e7f188310f6bc4c5edae43c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>316L stainless steel</topic><topic>Additive manufacturing</topic><topic>Austenitic stainless steels</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>Body fluids</topic><topic>Bone biomaterials</topic><topic>Bone growth</topic><topic>Bone implants</topic><topic>Bones</topic><topic>Cellular structure</topic><topic>Computed tomography</topic><topic>Corrosion</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Density</topic><topic>Design</topic><topic>laser powder bed fusion</topic><topic>Lasers</topic><topic>Mechanical properties</topic><topic>micro-CT porosity</topic><topic>Microstructural analysis</topic><topic>Porosity</topic><topic>Powder beds</topic><topic>SBF</topic><topic>Stainless steel</topic><topic>Structure-function relationships</topic><topic>Surface finishing</topic><topic>Surface properties</topic><topic>Surface roughness</topic><topic>Surgical implants</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nogueira, Pedro</creatorcontrib><creatorcontrib>Magrinho, João</creatorcontrib><creatorcontrib>Reis, Luis</creatorcontrib><creatorcontrib>de Deus, Augusto Moita</creatorcontrib><creatorcontrib>Silva, Maria Beatriz</creatorcontrib><creatorcontrib>Lopes, Pedro</creatorcontrib><creatorcontrib>Oliveira, Luís</creatorcontrib><creatorcontrib>Castela, António</creatorcontrib><creatorcontrib>Cláudio, Ricardo</creatorcontrib><creatorcontrib>Alves, Jorge L</creatorcontrib><creatorcontrib>Vaz, Maria Fátima</creatorcontrib><creatorcontrib>Carmezim, Maria</creatorcontrib><creatorcontrib>Santos, Catarina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of functional biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nogueira, Pedro</au><au>Magrinho, João</au><au>Reis, Luis</au><au>de Deus, Augusto Moita</au><au>Silva, Maria Beatriz</au><au>Lopes, Pedro</au><au>Oliveira, Luís</au><au>Castela, António</au><au>Cláudio, Ricardo</au><au>Alves, Jorge L</au><au>Vaz, Maria Fátima</au><au>Carmezim, Maria</au><au>Santos, Catarina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and Corrosion Behaviour in Simulated Body Fluid of As-Fabricated 3D Porous L-PBF 316L Stainless Steel Structures for Biomedical Implants</atitle><jtitle>Journal of functional biomaterials</jtitle><addtitle>J Funct Biomater</addtitle><date>2024-10-21</date><risdate>2024</risdate><volume>15</volume><issue>10</issue><spage>313</spage><pages>313-</pages><issn>2079-4983</issn><eissn>2079-4983</eissn><abstract>Laser powder bed fusion (L-PBF) is one of the most promising additive manufacturing technologies for creating customised 316L Stainless Steel (SS) implants with biomimetic characteristics, controlled porosity, and optimal structural and functional properties. However, the behaviour of as-fabricated 3D 316L SS structures without any surface finishing in environments that simulate body fluids remains largely unknown. To address this knowledge gap, the present study investigates the surface characteristics, the internal porosity, the corrosion in simulated body fluid (SBF), and the mechanical properties of as-fabricated 316L SS structures manufactured by L-PBF with rhombitruncated cuboctahedron (RTCO) unit cells with two distinct relative densities (10 and 35%). The microstructural analysis confirmed that the RTCO structure has a pure austenitic phase with a roughness of ~20 µm and a fine cellular morphology. The micro-CT revealed the presence of keyholes and a lack of fusion pores in both RTCO structures. Despite the difference in the internal porosity, the mechanical properties of both structures remain within the range of bone tissue and in line with the Gibson and Ashby model. Additionally, the as-fabricated RTCO structures demonstrated passive corrosion behaviour in the SBF solution. Thus, as-fabricated porous structures are promising biomaterials for implants due to their suitable surface roughness, mechanical properties, and corrosion resistance, facilitating bone tissue growth.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39452611</pmid><doi>10.3390/jfb15100313</doi><orcidid>https://orcid.org/0009-0001-5442-5632</orcidid><orcidid>https://orcid.org/0000-0001-9848-9569</orcidid><orcidid>https://orcid.org/0000-0002-9327-9092</orcidid><orcidid>https://orcid.org/0000-0003-2180-0376</orcidid><orcidid>https://orcid.org/0000-0002-4773-1957</orcidid><orcidid>https://orcid.org/0000-0003-1629-523X</orcidid><orcidid>https://orcid.org/0000-0002-0451-6245</orcidid><orcidid>https://orcid.org/0000-0002-5284-8391</orcidid><orcidid>https://orcid.org/0000-0002-0110-187X</orcidid><orcidid>https://orcid.org/0000-0002-7376-8104</orcidid><orcidid>https://orcid.org/0000-0002-8567-0032</orcidid><orcidid>https://orcid.org/0000-0002-4848-2614</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4983 |
ispartof | Journal of functional biomaterials, 2024-10, Vol.15 (10), p.313 |
issn | 2079-4983 2079-4983 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_575b8f9c5ed84b739fdfbca0b3d39175 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest) |
subjects | 316L stainless steel Additive manufacturing Austenitic stainless steels Biocompatibility Biomaterials Biomedical materials Biomimetics Body fluids Bone biomaterials Bone growth Bone implants Bones Cellular structure Computed tomography Corrosion Corrosion resistance Corrosion tests Density Design laser powder bed fusion Lasers Mechanical properties micro-CT porosity Microstructural analysis Porosity Powder beds SBF Stainless steel Structure-function relationships Surface finishing Surface properties Surface roughness Surgical implants Transplants & implants |
title | Mechanical and Corrosion Behaviour in Simulated Body Fluid of As-Fabricated 3D Porous L-PBF 316L Stainless Steel Structures for Biomedical Implants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20Corrosion%20Behaviour%20in%20Simulated%20Body%20Fluid%20of%20As-Fabricated%203D%20Porous%20L-PBF%20316L%20Stainless%20Steel%20Structures%20for%20Biomedical%20Implants&rft.jtitle=Journal%20of%20functional%20biomaterials&rft.au=Nogueira,%20Pedro&rft.date=2024-10-21&rft.volume=15&rft.issue=10&rft.spage=313&rft.pages=313-&rft.issn=2079-4983&rft.eissn=2079-4983&rft_id=info:doi/10.3390/jfb15100313&rft_dat=%3Cproquest_doaj_%3E3120675576%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-e01fa9bdb37bad468ed9f41a329497ef9e99dee67e7f188310f6bc4c5edae43c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120675576&rft_id=info:pmid/39452611&rfr_iscdi=true |