Loading…

Revisiting the Dynamics of Two-Body Problem in the Framework of the Continued Fraction Potential

In this analytical study, a novel solving method for determining the precise coordinates of a mass point in orbit around a significantly more massive primary body, operating within the confines of the restricted two-body problem (R2BP), has been introduced. Such an approach entails the utilization o...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2024-02, Vol.12 (4), p.590
Main Authors: Ershkov, Sergey, Mohamdien, Ghada F., Idrisi, M. Javed, Abouelmagd, Elbaz I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-6095d4067bf33cd4d7a06cb53c209c2328c8ed04dce9d8f5c44dc34679ba18b83
cites cdi_FETCH-LOGICAL-c406t-6095d4067bf33cd4d7a06cb53c209c2328c8ed04dce9d8f5c44dc34679ba18b83
container_end_page
container_issue 4
container_start_page 590
container_title Mathematics (Basel)
container_volume 12
creator Ershkov, Sergey
Mohamdien, Ghada F.
Idrisi, M. Javed
Abouelmagd, Elbaz I.
description In this analytical study, a novel solving method for determining the precise coordinates of a mass point in orbit around a significantly more massive primary body, operating within the confines of the restricted two-body problem (R2BP), has been introduced. Such an approach entails the utilization of a continued fraction potential diverging from the conventional potential function used in Kepler’s formulation of the R2BP. Furthermore, a system of equations of motion has been successfully explored to identify an analytical means of representing the solution in polar coordinates. An analytical approach for obtaining the function t = t(r), incorporating an elliptic integral, is developed. Additionally, by establishing the inverse function r = r(t), further solutions can be extrapolated through quasi-periodic cycles. Consequently, the previously elusive restricted two-body problem (R2BP) with a continued fraction potential stands fully and analytically solved.
doi_str_mv 10.3390/math12040590
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_57b89d1a60d54f749660ec85b7d63ee7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A784102312</galeid><doaj_id>oai_doaj_org_article_57b89d1a60d54f749660ec85b7d63ee7</doaj_id><sourcerecordid>A784102312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-6095d4067bf33cd4d7a06cb53c209c2328c8ed04dce9d8f5c44dc34679ba18b83</originalsourceid><addsrcrecordid>eNpNUcFOwzAMrRBIIODGB1TiSsFN0iY5wmAwaRIIwTmkibtlrA2kGdP-nowhhHPw0_Pzkx1n2VkJl5RKuOp0nJcEGFQS9rIjQggveCrs_8OH2ekwLCCFLKlg8ih7e8YvN7jo-lke55jfbnrdOTPkvs1f1r648XaTPwXfLLHLXf-jGQfd4dqH961oS4x8nwxWaLclE53v8ycfMZF6eZIdtHo54OlvPs5ex3cvo4di-ng_GV1PC8OgjkUNsrIJ8aal1FhmuYbaNBU1BKQhlAgj0AKzBqUVbWVYgpTVXDa6FI2gx9lk52u9XqiP4DodNsprp34IH2ZKh-jMElXFGyFtqWuwFWs5k3UNaETVcFtTRJ68zndeH8F_rnCIauFXoU_jKyIpSC4lg6S63KlmOpm6vvUxbZ-exfSDvsfWJf6aC1YCoSVJDRe7BhP8MARs_8YsQW1vqP7fkH4DsNSOCA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930979940</pqid></control><display><type>article</type><title>Revisiting the Dynamics of Two-Body Problem in the Framework of the Continued Fraction Potential</title><source>Publicly Available Content Database</source><creator>Ershkov, Sergey ; Mohamdien, Ghada F. ; Idrisi, M. Javed ; Abouelmagd, Elbaz I.</creator><creatorcontrib>Ershkov, Sergey ; Mohamdien, Ghada F. ; Idrisi, M. Javed ; Abouelmagd, Elbaz I.</creatorcontrib><description>In this analytical study, a novel solving method for determining the precise coordinates of a mass point in orbit around a significantly more massive primary body, operating within the confines of the restricted two-body problem (R2BP), has been introduced. Such an approach entails the utilization of a continued fraction potential diverging from the conventional potential function used in Kepler’s formulation of the R2BP. Furthermore, a system of equations of motion has been successfully explored to identify an analytical means of representing the solution in polar coordinates. An analytical approach for obtaining the function t = t(r), incorporating an elliptic integral, is developed. Additionally, by establishing the inverse function r = r(t), further solutions can be extrapolated through quasi-periodic cycles. Consequently, the previously elusive restricted two-body problem (R2BP) with a continued fraction potential stands fully and analytically solved.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math12040590</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Approximation ; continued fraction potential ; Continued fractions ; dynamics of a mass point ; Equations of motion ; Kepler’s formulation of R2BP ; Many-body problem ; Mathematical analysis ; Mathematical research ; Mechanics ; Polar coordinates ; Radiation ; restricted two-body problem (R2BP) ; Solar system ; Two body problem</subject><ispartof>Mathematics (Basel), 2024-02, Vol.12 (4), p.590</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-6095d4067bf33cd4d7a06cb53c209c2328c8ed04dce9d8f5c44dc34679ba18b83</citedby><cites>FETCH-LOGICAL-c406t-6095d4067bf33cd4d7a06cb53c209c2328c8ed04dce9d8f5c44dc34679ba18b83</cites><orcidid>0000-0003-1435-6780 ; 0000-0002-6826-1691 ; 0000-0002-2800-4527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2930979940/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2930979940?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Ershkov, Sergey</creatorcontrib><creatorcontrib>Mohamdien, Ghada F.</creatorcontrib><creatorcontrib>Idrisi, M. Javed</creatorcontrib><creatorcontrib>Abouelmagd, Elbaz I.</creatorcontrib><title>Revisiting the Dynamics of Two-Body Problem in the Framework of the Continued Fraction Potential</title><title>Mathematics (Basel)</title><description>In this analytical study, a novel solving method for determining the precise coordinates of a mass point in orbit around a significantly more massive primary body, operating within the confines of the restricted two-body problem (R2BP), has been introduced. Such an approach entails the utilization of a continued fraction potential diverging from the conventional potential function used in Kepler’s formulation of the R2BP. Furthermore, a system of equations of motion has been successfully explored to identify an analytical means of representing the solution in polar coordinates. An analytical approach for obtaining the function t = t(r), incorporating an elliptic integral, is developed. Additionally, by establishing the inverse function r = r(t), further solutions can be extrapolated through quasi-periodic cycles. Consequently, the previously elusive restricted two-body problem (R2BP) with a continued fraction potential stands fully and analytically solved.</description><subject>Approximation</subject><subject>continued fraction potential</subject><subject>Continued fractions</subject><subject>dynamics of a mass point</subject><subject>Equations of motion</subject><subject>Kepler’s formulation of R2BP</subject><subject>Many-body problem</subject><subject>Mathematical analysis</subject><subject>Mathematical research</subject><subject>Mechanics</subject><subject>Polar coordinates</subject><subject>Radiation</subject><subject>restricted two-body problem (R2BP)</subject><subject>Solar system</subject><subject>Two body problem</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFOwzAMrRBIIODGB1TiSsFN0iY5wmAwaRIIwTmkibtlrA2kGdP-nowhhHPw0_Pzkx1n2VkJl5RKuOp0nJcEGFQS9rIjQggveCrs_8OH2ekwLCCFLKlg8ih7e8YvN7jo-lke55jfbnrdOTPkvs1f1r648XaTPwXfLLHLXf-jGQfd4dqH961oS4x8nwxWaLclE53v8ycfMZF6eZIdtHo54OlvPs5ex3cvo4di-ng_GV1PC8OgjkUNsrIJ8aal1FhmuYbaNBU1BKQhlAgj0AKzBqUVbWVYgpTVXDa6FI2gx9lk52u9XqiP4DodNsprp34IH2ZKh-jMElXFGyFtqWuwFWs5k3UNaETVcFtTRJ68zndeH8F_rnCIauFXoU_jKyIpSC4lg6S63KlmOpm6vvUxbZ-exfSDvsfWJf6aC1YCoSVJDRe7BhP8MARs_8YsQW1vqP7fkH4DsNSOCA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Ershkov, Sergey</creator><creator>Mohamdien, Ghada F.</creator><creator>Idrisi, M. Javed</creator><creator>Abouelmagd, Elbaz I.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1435-6780</orcidid><orcidid>https://orcid.org/0000-0002-6826-1691</orcidid><orcidid>https://orcid.org/0000-0002-2800-4527</orcidid></search><sort><creationdate>20240201</creationdate><title>Revisiting the Dynamics of Two-Body Problem in the Framework of the Continued Fraction Potential</title><author>Ershkov, Sergey ; Mohamdien, Ghada F. ; Idrisi, M. Javed ; Abouelmagd, Elbaz I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-6095d4067bf33cd4d7a06cb53c209c2328c8ed04dce9d8f5c44dc34679ba18b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>continued fraction potential</topic><topic>Continued fractions</topic><topic>dynamics of a mass point</topic><topic>Equations of motion</topic><topic>Kepler’s formulation of R2BP</topic><topic>Many-body problem</topic><topic>Mathematical analysis</topic><topic>Mathematical research</topic><topic>Mechanics</topic><topic>Polar coordinates</topic><topic>Radiation</topic><topic>restricted two-body problem (R2BP)</topic><topic>Solar system</topic><topic>Two body problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ershkov, Sergey</creatorcontrib><creatorcontrib>Mohamdien, Ghada F.</creatorcontrib><creatorcontrib>Idrisi, M. Javed</creatorcontrib><creatorcontrib>Abouelmagd, Elbaz I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ershkov, Sergey</au><au>Mohamdien, Ghada F.</au><au>Idrisi, M. Javed</au><au>Abouelmagd, Elbaz I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the Dynamics of Two-Body Problem in the Framework of the Continued Fraction Potential</atitle><jtitle>Mathematics (Basel)</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>12</volume><issue>4</issue><spage>590</spage><pages>590-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>In this analytical study, a novel solving method for determining the precise coordinates of a mass point in orbit around a significantly more massive primary body, operating within the confines of the restricted two-body problem (R2BP), has been introduced. Such an approach entails the utilization of a continued fraction potential diverging from the conventional potential function used in Kepler’s formulation of the R2BP. Furthermore, a system of equations of motion has been successfully explored to identify an analytical means of representing the solution in polar coordinates. An analytical approach for obtaining the function t = t(r), incorporating an elliptic integral, is developed. Additionally, by establishing the inverse function r = r(t), further solutions can be extrapolated through quasi-periodic cycles. Consequently, the previously elusive restricted two-body problem (R2BP) with a continued fraction potential stands fully and analytically solved.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math12040590</doi><orcidid>https://orcid.org/0000-0003-1435-6780</orcidid><orcidid>https://orcid.org/0000-0002-6826-1691</orcidid><orcidid>https://orcid.org/0000-0002-2800-4527</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2024-02, Vol.12 (4), p.590
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_57b89d1a60d54f749660ec85b7d63ee7
source Publicly Available Content Database
subjects Approximation
continued fraction potential
Continued fractions
dynamics of a mass point
Equations of motion
Kepler’s formulation of R2BP
Many-body problem
Mathematical analysis
Mathematical research
Mechanics
Polar coordinates
Radiation
restricted two-body problem (R2BP)
Solar system
Two body problem
title Revisiting the Dynamics of Two-Body Problem in the Framework of the Continued Fraction Potential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20Dynamics%20of%20Two-Body%20Problem%20in%20the%20Framework%20of%20the%20Continued%20Fraction%20Potential&rft.jtitle=Mathematics%20(Basel)&rft.au=Ershkov,%20Sergey&rft.date=2024-02-01&rft.volume=12&rft.issue=4&rft.spage=590&rft.pages=590-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math12040590&rft_dat=%3Cgale_doaj_%3EA784102312%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-6095d4067bf33cd4d7a06cb53c209c2328c8ed04dce9d8f5c44dc34679ba18b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2930979940&rft_id=info:pmid/&rft_galeid=A784102312&rfr_iscdi=true