Loading…

The joining of CP-vanadium and Ti–6Al–4V using the Electron Beam Melting Additive Manufacturing method

The use of electron beam welding for dissimilar welding (DW) of commercially pure (CP) vanadium to Ti–6Al–4V has been investigated via ARCAM S12, an additive manufacturing powder-bed system. Investigations of bead-on-plate welds for Ti–6Al–4V were first conducted to identify the process parameters f...

Full description

Saved in:
Bibliographic Details
Published in:Advances in industrial and manufacturing engineering 2022-11, Vol.5, p.100102, Article 100102
Main Authors: Moosa, Affaan Uthman, Hernández-Nava, Everth, Mejbel, Mohanad Kadhim, Todd, Iain
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-6b2ade2bf1fcacefc8cabe5da4eec41975fde85e8d04324e5570a3e12ebf15b3
cites cdi_FETCH-LOGICAL-c340t-6b2ade2bf1fcacefc8cabe5da4eec41975fde85e8d04324e5570a3e12ebf15b3
container_end_page
container_issue
container_start_page 100102
container_title Advances in industrial and manufacturing engineering
container_volume 5
creator Moosa, Affaan Uthman
Hernández-Nava, Everth
Mejbel, Mohanad Kadhim
Todd, Iain
description The use of electron beam welding for dissimilar welding (DW) of commercially pure (CP) vanadium to Ti–6Al–4V has been investigated via ARCAM S12, an additive manufacturing powder-bed system. Investigations of bead-on-plate welds for Ti–6Al–4V were first conducted to identify the process parameters for full penetration welds with a minimum energy input of 37 mA at a traverse speed of 7 mm/s. Vanadium bead on plate welds produced a penetration of approximately 75%, which was enough to proceed onto DW experiments. Defect-free full penetration welds were produced. The DW weld zone microstructure revealed an elongated dendritic structure comprised of bulky βTi grains and a fine substructure of α' laths. Thermal imaging (TI) showed an increment in radiance temperature ahead of the melt pool, indicating that there is a minimum energy required before keyhole welding is present, confirming mathematical calculations. Mechanical characterisation finds a fair range of hardness across both base metals (BM), heat affected zones (HAZ) and fusion zones (FZ). With no yield plateau in tensile test curves, the material is confirmed to fail on the side with lower mechanical properties, i.e., vanadium, which draws a fair process window for dissimilar welding between Ti6Al4V and vanadium alloys.
doi_str_mv 10.1016/j.aime.2022.100102
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_57f5d62950bc45538a63c72bea970269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666912922000290</els_id><doaj_id>oai_doaj_org_article_57f5d62950bc45538a63c72bea970269</doaj_id><sourcerecordid>S2666912922000290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-6b2ade2bf1fcacefc8cabe5da4eec41975fde85e8d04324e5570a3e12ebf15b3</originalsourceid><addsrcrecordid>eNp9kN1KwzAYhosoOOZuwKPcQGeSNmkLnswxdaDowfA0fE2-bCn9kbQbeOY9eIdeiakT8ciTJLzJ8_LliaJLRueMMnlVzcE1OOeU8xBQRvlJNOFSyrhgvDj9cz6PZn1fUUp5zliSZJOo2uyQVJ1rXbslnSXL5_gALRi3bwi0hmzc5_uHXNRhTV_Ivh-fDQFZ1agH37XkBqEhj1gP483CGDe4A5JHaPcW9LD3Y9zgsOvMRXRmoe5x9rNPo83tarO8jx-e7tbLxUOsk5QOsSw5GOSlZVaDRqtzDSUKAymiTlmRCWswF5gbmiY8RSEyCgkyjgERZTKN1sda00GlXr1rwL-pDpz6Djq_VeAHp2tUIrPCSF4IWupUiCQHmeiMlwhFRrksQhc_dmnf9b1H-9vHqBrdq0qN7tXoXh3dB-j6CGH45MGhV7122Go0zgdpYQz3H_4Fb6aPMA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The joining of CP-vanadium and Ti–6Al–4V using the Electron Beam Melting Additive Manufacturing method</title><source>ScienceDirect Journals</source><creator>Moosa, Affaan Uthman ; Hernández-Nava, Everth ; Mejbel, Mohanad Kadhim ; Todd, Iain</creator><creatorcontrib>Moosa, Affaan Uthman ; Hernández-Nava, Everth ; Mejbel, Mohanad Kadhim ; Todd, Iain</creatorcontrib><description>The use of electron beam welding for dissimilar welding (DW) of commercially pure (CP) vanadium to Ti–6Al–4V has been investigated via ARCAM S12, an additive manufacturing powder-bed system. Investigations of bead-on-plate welds for Ti–6Al–4V were first conducted to identify the process parameters for full penetration welds with a minimum energy input of 37 mA at a traverse speed of 7 mm/s. Vanadium bead on plate welds produced a penetration of approximately 75%, which was enough to proceed onto DW experiments. Defect-free full penetration welds were produced. The DW weld zone microstructure revealed an elongated dendritic structure comprised of bulky βTi grains and a fine substructure of α' laths. Thermal imaging (TI) showed an increment in radiance temperature ahead of the melt pool, indicating that there is a minimum energy required before keyhole welding is present, confirming mathematical calculations. Mechanical characterisation finds a fair range of hardness across both base metals (BM), heat affected zones (HAZ) and fusion zones (FZ). With no yield plateau in tensile test curves, the material is confirmed to fail on the side with lower mechanical properties, i.e., vanadium, which draws a fair process window for dissimilar welding between Ti6Al4V and vanadium alloys.</description><identifier>ISSN: 2666-9129</identifier><identifier>EISSN: 2666-9129</identifier><identifier>DOI: 10.1016/j.aime.2022.100102</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Design of experiments ; Dissimilar welding ; Electron beam welding ; Microstructure ; Thermal imaging ; Titanium ; Vanadium</subject><ispartof>Advances in industrial and manufacturing engineering, 2022-11, Vol.5, p.100102, Article 100102</ispartof><rights>2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-6b2ade2bf1fcacefc8cabe5da4eec41975fde85e8d04324e5570a3e12ebf15b3</citedby><cites>FETCH-LOGICAL-c340t-6b2ade2bf1fcacefc8cabe5da4eec41975fde85e8d04324e5570a3e12ebf15b3</cites><orcidid>0000-0001-6008-593X ; 0000-0001-5108-5460 ; 0000-0002-6414-3313 ; 0000-0003-0217-1658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666912922000290$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27900,27901,45755</link.rule.ids></links><search><creatorcontrib>Moosa, Affaan Uthman</creatorcontrib><creatorcontrib>Hernández-Nava, Everth</creatorcontrib><creatorcontrib>Mejbel, Mohanad Kadhim</creatorcontrib><creatorcontrib>Todd, Iain</creatorcontrib><title>The joining of CP-vanadium and Ti–6Al–4V using the Electron Beam Melting Additive Manufacturing method</title><title>Advances in industrial and manufacturing engineering</title><description>The use of electron beam welding for dissimilar welding (DW) of commercially pure (CP) vanadium to Ti–6Al–4V has been investigated via ARCAM S12, an additive manufacturing powder-bed system. Investigations of bead-on-plate welds for Ti–6Al–4V were first conducted to identify the process parameters for full penetration welds with a minimum energy input of 37 mA at a traverse speed of 7 mm/s. Vanadium bead on plate welds produced a penetration of approximately 75%, which was enough to proceed onto DW experiments. Defect-free full penetration welds were produced. The DW weld zone microstructure revealed an elongated dendritic structure comprised of bulky βTi grains and a fine substructure of α' laths. Thermal imaging (TI) showed an increment in radiance temperature ahead of the melt pool, indicating that there is a minimum energy required before keyhole welding is present, confirming mathematical calculations. Mechanical characterisation finds a fair range of hardness across both base metals (BM), heat affected zones (HAZ) and fusion zones (FZ). With no yield plateau in tensile test curves, the material is confirmed to fail on the side with lower mechanical properties, i.e., vanadium, which draws a fair process window for dissimilar welding between Ti6Al4V and vanadium alloys.</description><subject>Design of experiments</subject><subject>Dissimilar welding</subject><subject>Electron beam welding</subject><subject>Microstructure</subject><subject>Thermal imaging</subject><subject>Titanium</subject><subject>Vanadium</subject><issn>2666-9129</issn><issn>2666-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kN1KwzAYhosoOOZuwKPcQGeSNmkLnswxdaDowfA0fE2-bCn9kbQbeOY9eIdeiakT8ciTJLzJ8_LliaJLRueMMnlVzcE1OOeU8xBQRvlJNOFSyrhgvDj9cz6PZn1fUUp5zliSZJOo2uyQVJ1rXbslnSXL5_gALRi3bwi0hmzc5_uHXNRhTV_Ivh-fDQFZ1agH37XkBqEhj1gP483CGDe4A5JHaPcW9LD3Y9zgsOvMRXRmoe5x9rNPo83tarO8jx-e7tbLxUOsk5QOsSw5GOSlZVaDRqtzDSUKAymiTlmRCWswF5gbmiY8RSEyCgkyjgERZTKN1sda00GlXr1rwL-pDpz6Djq_VeAHp2tUIrPCSF4IWupUiCQHmeiMlwhFRrksQhc_dmnf9b1H-9vHqBrdq0qN7tXoXh3dB-j6CGH45MGhV7122Go0zgdpYQz3H_4Fb6aPMA</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Moosa, Affaan Uthman</creator><creator>Hernández-Nava, Everth</creator><creator>Mejbel, Mohanad Kadhim</creator><creator>Todd, Iain</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6008-593X</orcidid><orcidid>https://orcid.org/0000-0001-5108-5460</orcidid><orcidid>https://orcid.org/0000-0002-6414-3313</orcidid><orcidid>https://orcid.org/0000-0003-0217-1658</orcidid></search><sort><creationdate>202211</creationdate><title>The joining of CP-vanadium and Ti–6Al–4V using the Electron Beam Melting Additive Manufacturing method</title><author>Moosa, Affaan Uthman ; Hernández-Nava, Everth ; Mejbel, Mohanad Kadhim ; Todd, Iain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-6b2ade2bf1fcacefc8cabe5da4eec41975fde85e8d04324e5570a3e12ebf15b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Design of experiments</topic><topic>Dissimilar welding</topic><topic>Electron beam welding</topic><topic>Microstructure</topic><topic>Thermal imaging</topic><topic>Titanium</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moosa, Affaan Uthman</creatorcontrib><creatorcontrib>Hernández-Nava, Everth</creatorcontrib><creatorcontrib>Mejbel, Mohanad Kadhim</creatorcontrib><creatorcontrib>Todd, Iain</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in industrial and manufacturing engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moosa, Affaan Uthman</au><au>Hernández-Nava, Everth</au><au>Mejbel, Mohanad Kadhim</au><au>Todd, Iain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The joining of CP-vanadium and Ti–6Al–4V using the Electron Beam Melting Additive Manufacturing method</atitle><jtitle>Advances in industrial and manufacturing engineering</jtitle><date>2022-11</date><risdate>2022</risdate><volume>5</volume><spage>100102</spage><pages>100102-</pages><artnum>100102</artnum><issn>2666-9129</issn><eissn>2666-9129</eissn><abstract>The use of electron beam welding for dissimilar welding (DW) of commercially pure (CP) vanadium to Ti–6Al–4V has been investigated via ARCAM S12, an additive manufacturing powder-bed system. Investigations of bead-on-plate welds for Ti–6Al–4V were first conducted to identify the process parameters for full penetration welds with a minimum energy input of 37 mA at a traverse speed of 7 mm/s. Vanadium bead on plate welds produced a penetration of approximately 75%, which was enough to proceed onto DW experiments. Defect-free full penetration welds were produced. The DW weld zone microstructure revealed an elongated dendritic structure comprised of bulky βTi grains and a fine substructure of α' laths. Thermal imaging (TI) showed an increment in radiance temperature ahead of the melt pool, indicating that there is a minimum energy required before keyhole welding is present, confirming mathematical calculations. Mechanical characterisation finds a fair range of hardness across both base metals (BM), heat affected zones (HAZ) and fusion zones (FZ). With no yield plateau in tensile test curves, the material is confirmed to fail on the side with lower mechanical properties, i.e., vanadium, which draws a fair process window for dissimilar welding between Ti6Al4V and vanadium alloys.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.aime.2022.100102</doi><orcidid>https://orcid.org/0000-0001-6008-593X</orcidid><orcidid>https://orcid.org/0000-0001-5108-5460</orcidid><orcidid>https://orcid.org/0000-0002-6414-3313</orcidid><orcidid>https://orcid.org/0000-0003-0217-1658</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-9129
ispartof Advances in industrial and manufacturing engineering, 2022-11, Vol.5, p.100102, Article 100102
issn 2666-9129
2666-9129
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_57f5d62950bc45538a63c72bea970269
source ScienceDirect Journals
subjects Design of experiments
Dissimilar welding
Electron beam welding
Microstructure
Thermal imaging
Titanium
Vanadium
title The joining of CP-vanadium and Ti–6Al–4V using the Electron Beam Melting Additive Manufacturing method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T12%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20joining%20of%20CP-vanadium%20and%20Ti%E2%80%936Al%E2%80%934V%20using%20the%20Electron%20Beam%20Melting%20Additive%20Manufacturing%20method&rft.jtitle=Advances%20in%20industrial%20and%20manufacturing%20engineering&rft.au=Moosa,%20Affaan%20Uthman&rft.date=2022-11&rft.volume=5&rft.spage=100102&rft.pages=100102-&rft.artnum=100102&rft.issn=2666-9129&rft.eissn=2666-9129&rft_id=info:doi/10.1016/j.aime.2022.100102&rft_dat=%3Celsevier_doaj_%3ES2666912922000290%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-6b2ade2bf1fcacefc8cabe5da4eec41975fde85e8d04324e5570a3e12ebf15b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true