Loading…
An Alignment Method Based on KF-ASMUKF Hybrid Filtering for Ship’s SINS under Mooring Conditions
To solve the problem that the ship’s strapdown inertial navigation system (SINS) alignment accuracy decreases with the increase of the nonlinear filtering state dimension under mooring conditions, a method based on Kalman filter (KF) and Adaptive scale mini-skewness single line sampling Unscented Ka...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2021-10, Vol.21 (21), p.7104 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c446t-ee9a24631b6780a4c39e3f0e8be9e3b21ac94bd5982486fc3c61a48502f1d2a93 |
---|---|
cites | cdi_FETCH-LOGICAL-c446t-ee9a24631b6780a4c39e3f0e8be9e3b21ac94bd5982486fc3c61a48502f1d2a93 |
container_end_page | |
container_issue | 21 |
container_start_page | 7104 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 21 |
creator | Yao, Pengchao Yang, Gongliu Peng, Xiafu |
description | To solve the problem that the ship’s strapdown inertial navigation system (SINS) alignment accuracy decreases with the increase of the nonlinear filtering state dimension under mooring conditions, a method based on Kalman filter (KF) and Adaptive scale mini-skewness single line sampling Unscented Kalman Filter (ASMUKF) hybrid filtering algorithm is proposed in this paper. Three improvements are made as the following: (1) adopt a new sampling strategy. To obtain the ASMUKF filtering algorithm, scale mini-skewness single line sampling is used to replaced the traditional symmetrical sampling method and an adaptive scale factor is adapted into the Unscented Kalman Filter (UKF) to correct the real-time transformation sampling process; (2) the improved ASMUKF algorithm is combined with KF to form KF-ASMUKF hybrid filtering model; (3) the hybrid filtering model is divided into linear and nonlinear parts. The linear filtering part adopts the KF filtering model and the nonlinear filtering part adopts the ASMUKF model. Then, the calculation steps of the hybrid filtering algorithm is designed in this paper. The simulation and experimental results show that the hybrid filtering algorithm proposed has certain advantages over the traditional algorithm, and it can reduce the ship’s SINS calculation amount and improve alignment accuracy under mooring conditions. |
doi_str_mv | 10.3390/s21217104 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_57fd8b1d9a7a4311ad45294e3855b2f4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_57fd8b1d9a7a4311ad45294e3855b2f4</doaj_id><sourcerecordid>2597483893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-ee9a24631b6780a4c39e3f0e8be9e3b21ac94bd5982486fc3c61a48502f1d2a93</originalsourceid><addsrcrecordid>eNpdks1uEzEQx1cIREvhwBtY4gKHBX_t2r4ghYjQqA0cQs-WP2YTRxs72LtIvfEavB5PwqapKsppRvP_6afRaKrqNcHvGVP4Q6GEEkEwf1KdE055LSnFT__pz6oXpewwpowx-bw6Y1wIzLE6r-wsolkfNnEPcUArGLbJo0-mgEcpoqtFPVuvbq4W6PLW5uDRIvQD5BA3qEsZrbfh8OfX74LWy69rNEYPGa1SusvnKfowhBTLy-pZZ_oCr-7rRXWz-Px9fllff_uynM-ua8d5O9QAylDeMmJbIbHhjilgHQZpYWosJcYpbn2jJOWy7RxzLTFcNph2xFOj2EW1PHl9Mjt9yGFv8q1OJui7QcobbfIQXA-6EZ2XlnhlhOGMEON5QxUHJpvG0o5Pro8n12G0e_BuOk42_SPp4ySGrd6kn1o2UkhxXObtvSCnHyOUQe9DcdD3JkIai6aNElwyqdiEvvkP3aUxx-lUR6rFraSKTNS7E-VyKiVD97AMwfr4BfrhC9hf_Quhng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596068291</pqid></control><display><type>article</type><title>An Alignment Method Based on KF-ASMUKF Hybrid Filtering for Ship’s SINS under Mooring Conditions</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Yao, Pengchao ; Yang, Gongliu ; Peng, Xiafu</creator><creatorcontrib>Yao, Pengchao ; Yang, Gongliu ; Peng, Xiafu</creatorcontrib><description>To solve the problem that the ship’s strapdown inertial navigation system (SINS) alignment accuracy decreases with the increase of the nonlinear filtering state dimension under mooring conditions, a method based on Kalman filter (KF) and Adaptive scale mini-skewness single line sampling Unscented Kalman Filter (ASMUKF) hybrid filtering algorithm is proposed in this paper. Three improvements are made as the following: (1) adopt a new sampling strategy. To obtain the ASMUKF filtering algorithm, scale mini-skewness single line sampling is used to replaced the traditional symmetrical sampling method and an adaptive scale factor is adapted into the Unscented Kalman Filter (UKF) to correct the real-time transformation sampling process; (2) the improved ASMUKF algorithm is combined with KF to form KF-ASMUKF hybrid filtering model; (3) the hybrid filtering model is divided into linear and nonlinear parts. The linear filtering part adopts the KF filtering model and the nonlinear filtering part adopts the ASMUKF model. Then, the calculation steps of the hybrid filtering algorithm is designed in this paper. The simulation and experimental results show that the hybrid filtering algorithm proposed has certain advantages over the traditional algorithm, and it can reduce the ship’s SINS calculation amount and improve alignment accuracy under mooring conditions.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21217104</identifier><identifier>PMID: 34770409</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Adaptive sampling ; Algorithms ; ASMUKF ; Decomposition ; Design ; hybrid filter algorithm ; Inertial navigation ; Kalman filters ; Linear filters ; Mooring ; mooring alignment ; Navigation systems ; Sampling methods ; SINS ; Skewness ; Strapdown inertial navigation ; Velocity</subject><ispartof>Sensors (Basel, Switzerland), 2021-10, Vol.21 (21), p.7104</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-ee9a24631b6780a4c39e3f0e8be9e3b21ac94bd5982486fc3c61a48502f1d2a93</citedby><cites>FETCH-LOGICAL-c446t-ee9a24631b6780a4c39e3f0e8be9e3b21ac94bd5982486fc3c61a48502f1d2a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2596068291/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2596068291?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Yao, Pengchao</creatorcontrib><creatorcontrib>Yang, Gongliu</creatorcontrib><creatorcontrib>Peng, Xiafu</creatorcontrib><title>An Alignment Method Based on KF-ASMUKF Hybrid Filtering for Ship’s SINS under Mooring Conditions</title><title>Sensors (Basel, Switzerland)</title><description>To solve the problem that the ship’s strapdown inertial navigation system (SINS) alignment accuracy decreases with the increase of the nonlinear filtering state dimension under mooring conditions, a method based on Kalman filter (KF) and Adaptive scale mini-skewness single line sampling Unscented Kalman Filter (ASMUKF) hybrid filtering algorithm is proposed in this paper. Three improvements are made as the following: (1) adopt a new sampling strategy. To obtain the ASMUKF filtering algorithm, scale mini-skewness single line sampling is used to replaced the traditional symmetrical sampling method and an adaptive scale factor is adapted into the Unscented Kalman Filter (UKF) to correct the real-time transformation sampling process; (2) the improved ASMUKF algorithm is combined with KF to form KF-ASMUKF hybrid filtering model; (3) the hybrid filtering model is divided into linear and nonlinear parts. The linear filtering part adopts the KF filtering model and the nonlinear filtering part adopts the ASMUKF model. Then, the calculation steps of the hybrid filtering algorithm is designed in this paper. The simulation and experimental results show that the hybrid filtering algorithm proposed has certain advantages over the traditional algorithm, and it can reduce the ship’s SINS calculation amount and improve alignment accuracy under mooring conditions.</description><subject>Accuracy</subject><subject>Adaptive sampling</subject><subject>Algorithms</subject><subject>ASMUKF</subject><subject>Decomposition</subject><subject>Design</subject><subject>hybrid filter algorithm</subject><subject>Inertial navigation</subject><subject>Kalman filters</subject><subject>Linear filters</subject><subject>Mooring</subject><subject>mooring alignment</subject><subject>Navigation systems</subject><subject>Sampling methods</subject><subject>SINS</subject><subject>Skewness</subject><subject>Strapdown inertial navigation</subject><subject>Velocity</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1uEzEQx1cIREvhwBtY4gKHBX_t2r4ghYjQqA0cQs-WP2YTRxs72LtIvfEavB5PwqapKsppRvP_6afRaKrqNcHvGVP4Q6GEEkEwf1KdE055LSnFT__pz6oXpewwpowx-bw6Y1wIzLE6r-wsolkfNnEPcUArGLbJo0-mgEcpoqtFPVuvbq4W6PLW5uDRIvQD5BA3qEsZrbfh8OfX74LWy69rNEYPGa1SusvnKfowhBTLy-pZZ_oCr-7rRXWz-Px9fllff_uynM-ua8d5O9QAylDeMmJbIbHhjilgHQZpYWosJcYpbn2jJOWy7RxzLTFcNph2xFOj2EW1PHl9Mjt9yGFv8q1OJui7QcobbfIQXA-6EZ2XlnhlhOGMEON5QxUHJpvG0o5Pro8n12G0e_BuOk42_SPp4ySGrd6kn1o2UkhxXObtvSCnHyOUQe9DcdD3JkIai6aNElwyqdiEvvkP3aUxx-lUR6rFraSKTNS7E-VyKiVD97AMwfr4BfrhC9hf_Quhng</recordid><startdate>20211026</startdate><enddate>20211026</enddate><creator>Yao, Pengchao</creator><creator>Yang, Gongliu</creator><creator>Peng, Xiafu</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211026</creationdate><title>An Alignment Method Based on KF-ASMUKF Hybrid Filtering for Ship’s SINS under Mooring Conditions</title><author>Yao, Pengchao ; Yang, Gongliu ; Peng, Xiafu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-ee9a24631b6780a4c39e3f0e8be9e3b21ac94bd5982486fc3c61a48502f1d2a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Adaptive sampling</topic><topic>Algorithms</topic><topic>ASMUKF</topic><topic>Decomposition</topic><topic>Design</topic><topic>hybrid filter algorithm</topic><topic>Inertial navigation</topic><topic>Kalman filters</topic><topic>Linear filters</topic><topic>Mooring</topic><topic>mooring alignment</topic><topic>Navigation systems</topic><topic>Sampling methods</topic><topic>SINS</topic><topic>Skewness</topic><topic>Strapdown inertial navigation</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Pengchao</creatorcontrib><creatorcontrib>Yang, Gongliu</creatorcontrib><creatorcontrib>Peng, Xiafu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Pengchao</au><au>Yang, Gongliu</au><au>Peng, Xiafu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Alignment Method Based on KF-ASMUKF Hybrid Filtering for Ship’s SINS under Mooring Conditions</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2021-10-26</date><risdate>2021</risdate><volume>21</volume><issue>21</issue><spage>7104</spage><pages>7104-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>To solve the problem that the ship’s strapdown inertial navigation system (SINS) alignment accuracy decreases with the increase of the nonlinear filtering state dimension under mooring conditions, a method based on Kalman filter (KF) and Adaptive scale mini-skewness single line sampling Unscented Kalman Filter (ASMUKF) hybrid filtering algorithm is proposed in this paper. Three improvements are made as the following: (1) adopt a new sampling strategy. To obtain the ASMUKF filtering algorithm, scale mini-skewness single line sampling is used to replaced the traditional symmetrical sampling method and an adaptive scale factor is adapted into the Unscented Kalman Filter (UKF) to correct the real-time transformation sampling process; (2) the improved ASMUKF algorithm is combined with KF to form KF-ASMUKF hybrid filtering model; (3) the hybrid filtering model is divided into linear and nonlinear parts. The linear filtering part adopts the KF filtering model and the nonlinear filtering part adopts the ASMUKF model. Then, the calculation steps of the hybrid filtering algorithm is designed in this paper. The simulation and experimental results show that the hybrid filtering algorithm proposed has certain advantages over the traditional algorithm, and it can reduce the ship’s SINS calculation amount and improve alignment accuracy under mooring conditions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34770409</pmid><doi>10.3390/s21217104</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2021-10, Vol.21 (21), p.7104 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_57fd8b1d9a7a4311ad45294e3855b2f4 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Accuracy Adaptive sampling Algorithms ASMUKF Decomposition Design hybrid filter algorithm Inertial navigation Kalman filters Linear filters Mooring mooring alignment Navigation systems Sampling methods SINS Skewness Strapdown inertial navigation Velocity |
title | An Alignment Method Based on KF-ASMUKF Hybrid Filtering for Ship’s SINS under Mooring Conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Alignment%20Method%20Based%20on%20KF-ASMUKF%20Hybrid%20Filtering%20for%20Ship%E2%80%99s%20SINS%20under%20Mooring%20Conditions&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Yao,%20Pengchao&rft.date=2021-10-26&rft.volume=21&rft.issue=21&rft.spage=7104&rft.pages=7104-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21217104&rft_dat=%3Cproquest_doaj_%3E2597483893%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-ee9a24631b6780a4c39e3f0e8be9e3b21ac94bd5982486fc3c61a48502f1d2a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2596068291&rft_id=info:pmid/34770409&rfr_iscdi=true |