Loading…

An Alignment Method Based on KF-ASMUKF Hybrid Filtering for Ship’s SINS under Mooring Conditions

To solve the problem that the ship’s strapdown inertial navigation system (SINS) alignment accuracy decreases with the increase of the nonlinear filtering state dimension under mooring conditions, a method based on Kalman filter (KF) and Adaptive scale mini-skewness single line sampling Unscented Ka...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2021-10, Vol.21 (21), p.7104
Main Authors: Yao, Pengchao, Yang, Gongliu, Peng, Xiafu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-ee9a24631b6780a4c39e3f0e8be9e3b21ac94bd5982486fc3c61a48502f1d2a93
cites cdi_FETCH-LOGICAL-c446t-ee9a24631b6780a4c39e3f0e8be9e3b21ac94bd5982486fc3c61a48502f1d2a93
container_end_page
container_issue 21
container_start_page 7104
container_title Sensors (Basel, Switzerland)
container_volume 21
creator Yao, Pengchao
Yang, Gongliu
Peng, Xiafu
description To solve the problem that the ship’s strapdown inertial navigation system (SINS) alignment accuracy decreases with the increase of the nonlinear filtering state dimension under mooring conditions, a method based on Kalman filter (KF) and Adaptive scale mini-skewness single line sampling Unscented Kalman Filter (ASMUKF) hybrid filtering algorithm is proposed in this paper. Three improvements are made as the following: (1) adopt a new sampling strategy. To obtain the ASMUKF filtering algorithm, scale mini-skewness single line sampling is used to replaced the traditional symmetrical sampling method and an adaptive scale factor is adapted into the Unscented Kalman Filter (UKF) to correct the real-time transformation sampling process; (2) the improved ASMUKF algorithm is combined with KF to form KF-ASMUKF hybrid filtering model; (3) the hybrid filtering model is divided into linear and nonlinear parts. The linear filtering part adopts the KF filtering model and the nonlinear filtering part adopts the ASMUKF model. Then, the calculation steps of the hybrid filtering algorithm is designed in this paper. The simulation and experimental results show that the hybrid filtering algorithm proposed has certain advantages over the traditional algorithm, and it can reduce the ship’s SINS calculation amount and improve alignment accuracy under mooring conditions.
doi_str_mv 10.3390/s21217104
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_57fd8b1d9a7a4311ad45294e3855b2f4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_57fd8b1d9a7a4311ad45294e3855b2f4</doaj_id><sourcerecordid>2597483893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-ee9a24631b6780a4c39e3f0e8be9e3b21ac94bd5982486fc3c61a48502f1d2a93</originalsourceid><addsrcrecordid>eNpdks1uEzEQx1cIREvhwBtY4gKHBX_t2r4ghYjQqA0cQs-WP2YTRxs72LtIvfEavB5PwqapKsppRvP_6afRaKrqNcHvGVP4Q6GEEkEwf1KdE055LSnFT__pz6oXpewwpowx-bw6Y1wIzLE6r-wsolkfNnEPcUArGLbJo0-mgEcpoqtFPVuvbq4W6PLW5uDRIvQD5BA3qEsZrbfh8OfX74LWy69rNEYPGa1SusvnKfowhBTLy-pZZ_oCr-7rRXWz-Px9fllff_uynM-ua8d5O9QAylDeMmJbIbHhjilgHQZpYWosJcYpbn2jJOWy7RxzLTFcNph2xFOj2EW1PHl9Mjt9yGFv8q1OJui7QcobbfIQXA-6EZ2XlnhlhOGMEON5QxUHJpvG0o5Pro8n12G0e_BuOk42_SPp4ySGrd6kn1o2UkhxXObtvSCnHyOUQe9DcdD3JkIai6aNElwyqdiEvvkP3aUxx-lUR6rFraSKTNS7E-VyKiVD97AMwfr4BfrhC9hf_Quhng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596068291</pqid></control><display><type>article</type><title>An Alignment Method Based on KF-ASMUKF Hybrid Filtering for Ship’s SINS under Mooring Conditions</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Yao, Pengchao ; Yang, Gongliu ; Peng, Xiafu</creator><creatorcontrib>Yao, Pengchao ; Yang, Gongliu ; Peng, Xiafu</creatorcontrib><description>To solve the problem that the ship’s strapdown inertial navigation system (SINS) alignment accuracy decreases with the increase of the nonlinear filtering state dimension under mooring conditions, a method based on Kalman filter (KF) and Adaptive scale mini-skewness single line sampling Unscented Kalman Filter (ASMUKF) hybrid filtering algorithm is proposed in this paper. Three improvements are made as the following: (1) adopt a new sampling strategy. To obtain the ASMUKF filtering algorithm, scale mini-skewness single line sampling is used to replaced the traditional symmetrical sampling method and an adaptive scale factor is adapted into the Unscented Kalman Filter (UKF) to correct the real-time transformation sampling process; (2) the improved ASMUKF algorithm is combined with KF to form KF-ASMUKF hybrid filtering model; (3) the hybrid filtering model is divided into linear and nonlinear parts. The linear filtering part adopts the KF filtering model and the nonlinear filtering part adopts the ASMUKF model. Then, the calculation steps of the hybrid filtering algorithm is designed in this paper. The simulation and experimental results show that the hybrid filtering algorithm proposed has certain advantages over the traditional algorithm, and it can reduce the ship’s SINS calculation amount and improve alignment accuracy under mooring conditions.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21217104</identifier><identifier>PMID: 34770409</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Adaptive sampling ; Algorithms ; ASMUKF ; Decomposition ; Design ; hybrid filter algorithm ; Inertial navigation ; Kalman filters ; Linear filters ; Mooring ; mooring alignment ; Navigation systems ; Sampling methods ; SINS ; Skewness ; Strapdown inertial navigation ; Velocity</subject><ispartof>Sensors (Basel, Switzerland), 2021-10, Vol.21 (21), p.7104</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-ee9a24631b6780a4c39e3f0e8be9e3b21ac94bd5982486fc3c61a48502f1d2a93</citedby><cites>FETCH-LOGICAL-c446t-ee9a24631b6780a4c39e3f0e8be9e3b21ac94bd5982486fc3c61a48502f1d2a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2596068291/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2596068291?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Yao, Pengchao</creatorcontrib><creatorcontrib>Yang, Gongliu</creatorcontrib><creatorcontrib>Peng, Xiafu</creatorcontrib><title>An Alignment Method Based on KF-ASMUKF Hybrid Filtering for Ship’s SINS under Mooring Conditions</title><title>Sensors (Basel, Switzerland)</title><description>To solve the problem that the ship’s strapdown inertial navigation system (SINS) alignment accuracy decreases with the increase of the nonlinear filtering state dimension under mooring conditions, a method based on Kalman filter (KF) and Adaptive scale mini-skewness single line sampling Unscented Kalman Filter (ASMUKF) hybrid filtering algorithm is proposed in this paper. Three improvements are made as the following: (1) adopt a new sampling strategy. To obtain the ASMUKF filtering algorithm, scale mini-skewness single line sampling is used to replaced the traditional symmetrical sampling method and an adaptive scale factor is adapted into the Unscented Kalman Filter (UKF) to correct the real-time transformation sampling process; (2) the improved ASMUKF algorithm is combined with KF to form KF-ASMUKF hybrid filtering model; (3) the hybrid filtering model is divided into linear and nonlinear parts. The linear filtering part adopts the KF filtering model and the nonlinear filtering part adopts the ASMUKF model. Then, the calculation steps of the hybrid filtering algorithm is designed in this paper. The simulation and experimental results show that the hybrid filtering algorithm proposed has certain advantages over the traditional algorithm, and it can reduce the ship’s SINS calculation amount and improve alignment accuracy under mooring conditions.</description><subject>Accuracy</subject><subject>Adaptive sampling</subject><subject>Algorithms</subject><subject>ASMUKF</subject><subject>Decomposition</subject><subject>Design</subject><subject>hybrid filter algorithm</subject><subject>Inertial navigation</subject><subject>Kalman filters</subject><subject>Linear filters</subject><subject>Mooring</subject><subject>mooring alignment</subject><subject>Navigation systems</subject><subject>Sampling methods</subject><subject>SINS</subject><subject>Skewness</subject><subject>Strapdown inertial navigation</subject><subject>Velocity</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1uEzEQx1cIREvhwBtY4gKHBX_t2r4ghYjQqA0cQs-WP2YTRxs72LtIvfEavB5PwqapKsppRvP_6afRaKrqNcHvGVP4Q6GEEkEwf1KdE055LSnFT__pz6oXpewwpowx-bw6Y1wIzLE6r-wsolkfNnEPcUArGLbJo0-mgEcpoqtFPVuvbq4W6PLW5uDRIvQD5BA3qEsZrbfh8OfX74LWy69rNEYPGa1SusvnKfowhBTLy-pZZ_oCr-7rRXWz-Px9fllff_uynM-ua8d5O9QAylDeMmJbIbHhjilgHQZpYWosJcYpbn2jJOWy7RxzLTFcNph2xFOj2EW1PHl9Mjt9yGFv8q1OJui7QcobbfIQXA-6EZ2XlnhlhOGMEON5QxUHJpvG0o5Pro8n12G0e_BuOk42_SPp4ySGrd6kn1o2UkhxXObtvSCnHyOUQe9DcdD3JkIai6aNElwyqdiEvvkP3aUxx-lUR6rFraSKTNS7E-VyKiVD97AMwfr4BfrhC9hf_Quhng</recordid><startdate>20211026</startdate><enddate>20211026</enddate><creator>Yao, Pengchao</creator><creator>Yang, Gongliu</creator><creator>Peng, Xiafu</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211026</creationdate><title>An Alignment Method Based on KF-ASMUKF Hybrid Filtering for Ship’s SINS under Mooring Conditions</title><author>Yao, Pengchao ; Yang, Gongliu ; Peng, Xiafu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-ee9a24631b6780a4c39e3f0e8be9e3b21ac94bd5982486fc3c61a48502f1d2a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Adaptive sampling</topic><topic>Algorithms</topic><topic>ASMUKF</topic><topic>Decomposition</topic><topic>Design</topic><topic>hybrid filter algorithm</topic><topic>Inertial navigation</topic><topic>Kalman filters</topic><topic>Linear filters</topic><topic>Mooring</topic><topic>mooring alignment</topic><topic>Navigation systems</topic><topic>Sampling methods</topic><topic>SINS</topic><topic>Skewness</topic><topic>Strapdown inertial navigation</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Pengchao</creatorcontrib><creatorcontrib>Yang, Gongliu</creatorcontrib><creatorcontrib>Peng, Xiafu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Pengchao</au><au>Yang, Gongliu</au><au>Peng, Xiafu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Alignment Method Based on KF-ASMUKF Hybrid Filtering for Ship’s SINS under Mooring Conditions</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2021-10-26</date><risdate>2021</risdate><volume>21</volume><issue>21</issue><spage>7104</spage><pages>7104-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>To solve the problem that the ship’s strapdown inertial navigation system (SINS) alignment accuracy decreases with the increase of the nonlinear filtering state dimension under mooring conditions, a method based on Kalman filter (KF) and Adaptive scale mini-skewness single line sampling Unscented Kalman Filter (ASMUKF) hybrid filtering algorithm is proposed in this paper. Three improvements are made as the following: (1) adopt a new sampling strategy. To obtain the ASMUKF filtering algorithm, scale mini-skewness single line sampling is used to replaced the traditional symmetrical sampling method and an adaptive scale factor is adapted into the Unscented Kalman Filter (UKF) to correct the real-time transformation sampling process; (2) the improved ASMUKF algorithm is combined with KF to form KF-ASMUKF hybrid filtering model; (3) the hybrid filtering model is divided into linear and nonlinear parts. The linear filtering part adopts the KF filtering model and the nonlinear filtering part adopts the ASMUKF model. Then, the calculation steps of the hybrid filtering algorithm is designed in this paper. The simulation and experimental results show that the hybrid filtering algorithm proposed has certain advantages over the traditional algorithm, and it can reduce the ship’s SINS calculation amount and improve alignment accuracy under mooring conditions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34770409</pmid><doi>10.3390/s21217104</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2021-10, Vol.21 (21), p.7104
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_57fd8b1d9a7a4311ad45294e3855b2f4
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Accuracy
Adaptive sampling
Algorithms
ASMUKF
Decomposition
Design
hybrid filter algorithm
Inertial navigation
Kalman filters
Linear filters
Mooring
mooring alignment
Navigation systems
Sampling methods
SINS
Skewness
Strapdown inertial navigation
Velocity
title An Alignment Method Based on KF-ASMUKF Hybrid Filtering for Ship’s SINS under Mooring Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Alignment%20Method%20Based%20on%20KF-ASMUKF%20Hybrid%20Filtering%20for%20Ship%E2%80%99s%20SINS%20under%20Mooring%20Conditions&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Yao,%20Pengchao&rft.date=2021-10-26&rft.volume=21&rft.issue=21&rft.spage=7104&rft.pages=7104-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21217104&rft_dat=%3Cproquest_doaj_%3E2597483893%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-ee9a24631b6780a4c39e3f0e8be9e3b21ac94bd5982486fc3c61a48502f1d2a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2596068291&rft_id=info:pmid/34770409&rfr_iscdi=true