Loading…
Temporal variation in nitrous oxide ( N 2 O ) fluxes from an oil palm plantation in Indonesia: An ecosystem‐scale analysis
The rapidly growing areal extent of oil palm ( Elaeis guineensis Jacq.) plantations and their high fertilizer input raises concerns about their role as substantial N 2 O sources. In this study, we present the first eddy covariance (EC) measurements of ecosystem‐scale N 2 O fluxes in an oil palm plan...
Saved in:
Published in: | Global change biology. Bioenergy 2023-10, Vol.15 (10), p.1221-1239 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c320t-522cd1ab5e81e3c0ce2204e6be0ebb9c49e09c3545bf6cd615bee038d56e86bf3 |
container_end_page | 1239 |
container_issue | 10 |
container_start_page | 1221 |
container_title | Global change biology. Bioenergy |
container_volume | 15 |
creator | Stiegler, Christian Koebsch, Franziska Ali, Ashehad Ashween June, Tania Veldkamp, Edzo Corre, Marife D. Koks, Joost Tjoa, Aiyen Knohl, Alexander |
description | The rapidly growing areal extent of oil palm (
Elaeis guineensis
Jacq.) plantations and their high fertilizer input raises concerns about their role as substantial N
2
O sources. In this study, we present the first eddy covariance (EC) measurements of ecosystem‐scale N
2
O fluxes in an oil palm plantation and combine them with vented soil chamber measurements of point‐scale soil N
2
O fluxes. Based on EC measurements during the period August 2017 to April 2019, the studied oil palm plantation in the tropical lowlands of Jambi Province (Sumatra, Indonesia) is a high source of N
2
O, with average emission of 0.32 ± 0.003 g N
2
O‐N m
−2
year
−1
(149.85 ± 1.40 g CO
2
‐equivalent m
−2
year
−1
). Compared to the EC‐based N
2
O flux, average chamber‐based soil N
2
O fluxes (0.16 ± 0.047 g N
2
O‐N m
−2
year
−1
, 74.93 ± 23.41 g CO
2
‐equivalent m
−2
year
−1
) are significantly (~49%,
p
|
doi_str_mv | 10.1111/gcbb.13088 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_581cd87753ef4c10b0a5c000d499fd5c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_581cd87753ef4c10b0a5c000d499fd5c</doaj_id><sourcerecordid>2863701000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-522cd1ab5e81e3c0ce2204e6be0ebb9c49e09c3545bf6cd615bee038d56e86bf3</originalsourceid><addsrcrecordid>eNo9kc9q3DAQxk1JoPl3yRMM9NIUNhlZlmz3FkLaLoTsZXMW-jMOWmTLlbwhCz30EfqMeZI62TZzmWH4vm8YfkVxzvCSzXX1aI25ZByb5kNxxGpRL1iN9cH_Wbb8Y3Gc8wZRCsnao-LXmvoxJh3gSSevJx8H8AMMfkpxmyE-e0fwGe6hhBVcQBe2z5ShS7EHPUD0AUYdehiDHqZ393JwcaDs9Ve4HoBszLs8Uf_y-0-2OtDs1GGXfT4tDjsdMp396yfFw7fb9c2Pxd3q-_Lm-m5heYnTQpSldUwbQQ0jbtFSWWJF0hCSMa2tWsLWclEJ00nrJBOGCHnjhKRGmo6fFMt9rot6o8bke512Kmqv3hYxPSqdJm8DKdEw65q6Fpy6yjI0qIVFRFe1beeEnbM-7bPGFH9uKU9qE7dpfiirspG8RjarZ9WXvcqmmHOi7v0qQ_VKSr2SUm-k-F-o1IfU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863701000</pqid></control><display><type>article</type><title>Temporal variation in nitrous oxide ( N 2 O ) fluxes from an oil palm plantation in Indonesia: An ecosystem‐scale analysis</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Stiegler, Christian ; Koebsch, Franziska ; Ali, Ashehad Ashween ; June, Tania ; Veldkamp, Edzo ; Corre, Marife D. ; Koks, Joost ; Tjoa, Aiyen ; Knohl, Alexander</creator><creatorcontrib>Stiegler, Christian ; Koebsch, Franziska ; Ali, Ashehad Ashween ; June, Tania ; Veldkamp, Edzo ; Corre, Marife D. ; Koks, Joost ; Tjoa, Aiyen ; Knohl, Alexander</creatorcontrib><description>The rapidly growing areal extent of oil palm (
Elaeis guineensis
Jacq.) plantations and their high fertilizer input raises concerns about their role as substantial N
2
O sources. In this study, we present the first eddy covariance (EC) measurements of ecosystem‐scale N
2
O fluxes in an oil palm plantation and combine them with vented soil chamber measurements of point‐scale soil N
2
O fluxes. Based on EC measurements during the period August 2017 to April 2019, the studied oil palm plantation in the tropical lowlands of Jambi Province (Sumatra, Indonesia) is a high source of N
2
O, with average emission of 0.32 ± 0.003 g N
2
O‐N m
−2
year
−1
(149.85 ± 1.40 g CO
2
‐equivalent m
−2
year
−1
). Compared to the EC‐based N
2
O flux, average chamber‐based soil N
2
O fluxes (0.16 ± 0.047 g N
2
O‐N m
−2
year
−1
, 74.93 ± 23.41 g CO
2
‐equivalent m
−2
year
−1
) are significantly (~49%,
p
< 0.05) lower, suggesting that important N
2
O pathways are not covered by the chamber measurements. Conventional chamber‐based N
2
O emission estimates from oil palm up‐scaled to ecosystem level might therefore be substantially underestimated. We show that the dynamic gas exchange of the oil palm canopy with the atmosphere and the oil palms' response to meteorological and soil conditions may play an important but yet widely unexplored role in the N
2
O budget of oil palm plantations. Diel pattern of N
2
O fluxes showed strong causal relationships with photosynthesis‐related variables, i.e. latent heat flux, incoming photosynthetically active radiation and gross primary productivity during day time, and ecosystem respiration and soil temperature during night time. At longer time scales (>2 days), soil temperature and water‐filled pore space gained importance on N
2
O flux variation. These results suggest a plant‐mediated N
2
O transport, providing important input for modelling approaches and strategies to mitigate the negative impact of N
2
O emissions from oil palm cultivation through appropriate site selection and management.</description><identifier>ISSN: 1757-1693</identifier><identifier>EISSN: 1757-1707</identifier><identifier>DOI: 10.1111/gcbb.13088</identifier><language>eng</language><publisher>Oxford: John Wiley & Sons, Inc</publisher><subject>Carbon dioxide ; Chambers ; Diel activity ; ecosystem scale emissions ; Ecosystems ; eddy covariance ; Emission ; emission factor ; Emission measurements ; Emissions ; Equivalence ; Fertilizers ; Fluctuations ; Gas exchange ; global warming potential ; Greenhouse gases ; Heat flux ; hysteresis ; Latent heat ; Lowlands ; Measurement techniques ; Nitrogen ; Nitrous oxide ; Oils & fats ; Photosynthesis ; Photosynthetically active radiation ; Plantations ; Potassium ; Precipitation ; Site selection ; Soil conditions ; Soil temperature ; Soil water ; Soils ; Temporal variations ; Vegetable oils ; Vegetation</subject><ispartof>Global change biology. Bioenergy, 2023-10, Vol.15 (10), p.1221-1239</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-522cd1ab5e81e3c0ce2204e6be0ebb9c49e09c3545bf6cd615bee038d56e86bf3</cites><orcidid>0000-0002-8318-8349 ; 0000-0002-7615-8870 ; 0000-0002-0130-2401 ; 0000-0003-1045-7680 ; 0000-0002-7328-306X ; 0000-0003-0359-2104 ; 0000-0003-2068-3219 ; 0000-0003-0583-9174</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2863701000/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2863701000?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Stiegler, Christian</creatorcontrib><creatorcontrib>Koebsch, Franziska</creatorcontrib><creatorcontrib>Ali, Ashehad Ashween</creatorcontrib><creatorcontrib>June, Tania</creatorcontrib><creatorcontrib>Veldkamp, Edzo</creatorcontrib><creatorcontrib>Corre, Marife D.</creatorcontrib><creatorcontrib>Koks, Joost</creatorcontrib><creatorcontrib>Tjoa, Aiyen</creatorcontrib><creatorcontrib>Knohl, Alexander</creatorcontrib><title>Temporal variation in nitrous oxide ( N 2 O ) fluxes from an oil palm plantation in Indonesia: An ecosystem‐scale analysis</title><title>Global change biology. Bioenergy</title><description>The rapidly growing areal extent of oil palm (
Elaeis guineensis
Jacq.) plantations and their high fertilizer input raises concerns about their role as substantial N
2
O sources. In this study, we present the first eddy covariance (EC) measurements of ecosystem‐scale N
2
O fluxes in an oil palm plantation and combine them with vented soil chamber measurements of point‐scale soil N
2
O fluxes. Based on EC measurements during the period August 2017 to April 2019, the studied oil palm plantation in the tropical lowlands of Jambi Province (Sumatra, Indonesia) is a high source of N
2
O, with average emission of 0.32 ± 0.003 g N
2
O‐N m
−2
year
−1
(149.85 ± 1.40 g CO
2
‐equivalent m
−2
year
−1
). Compared to the EC‐based N
2
O flux, average chamber‐based soil N
2
O fluxes (0.16 ± 0.047 g N
2
O‐N m
−2
year
−1
, 74.93 ± 23.41 g CO
2
‐equivalent m
−2
year
−1
) are significantly (~49%,
p
< 0.05) lower, suggesting that important N
2
O pathways are not covered by the chamber measurements. Conventional chamber‐based N
2
O emission estimates from oil palm up‐scaled to ecosystem level might therefore be substantially underestimated. We show that the dynamic gas exchange of the oil palm canopy with the atmosphere and the oil palms' response to meteorological and soil conditions may play an important but yet widely unexplored role in the N
2
O budget of oil palm plantations. Diel pattern of N
2
O fluxes showed strong causal relationships with photosynthesis‐related variables, i.e. latent heat flux, incoming photosynthetically active radiation and gross primary productivity during day time, and ecosystem respiration and soil temperature during night time. At longer time scales (>2 days), soil temperature and water‐filled pore space gained importance on N
2
O flux variation. These results suggest a plant‐mediated N
2
O transport, providing important input for modelling approaches and strategies to mitigate the negative impact of N
2
O emissions from oil palm cultivation through appropriate site selection and management.</description><subject>Carbon dioxide</subject><subject>Chambers</subject><subject>Diel activity</subject><subject>ecosystem scale emissions</subject><subject>Ecosystems</subject><subject>eddy covariance</subject><subject>Emission</subject><subject>emission factor</subject><subject>Emission measurements</subject><subject>Emissions</subject><subject>Equivalence</subject><subject>Fertilizers</subject><subject>Fluctuations</subject><subject>Gas exchange</subject><subject>global warming potential</subject><subject>Greenhouse gases</subject><subject>Heat flux</subject><subject>hysteresis</subject><subject>Latent heat</subject><subject>Lowlands</subject><subject>Measurement techniques</subject><subject>Nitrogen</subject><subject>Nitrous oxide</subject><subject>Oils & fats</subject><subject>Photosynthesis</subject><subject>Photosynthetically active radiation</subject><subject>Plantations</subject><subject>Potassium</subject><subject>Precipitation</subject><subject>Site selection</subject><subject>Soil conditions</subject><subject>Soil temperature</subject><subject>Soil water</subject><subject>Soils</subject><subject>Temporal variations</subject><subject>Vegetable oils</subject><subject>Vegetation</subject><issn>1757-1693</issn><issn>1757-1707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNo9kc9q3DAQxk1JoPl3yRMM9NIUNhlZlmz3FkLaLoTsZXMW-jMOWmTLlbwhCz30EfqMeZI62TZzmWH4vm8YfkVxzvCSzXX1aI25ZByb5kNxxGpRL1iN9cH_Wbb8Y3Gc8wZRCsnao-LXmvoxJh3gSSevJx8H8AMMfkpxmyE-e0fwGe6hhBVcQBe2z5ShS7EHPUD0AUYdehiDHqZ393JwcaDs9Ve4HoBszLs8Uf_y-0-2OtDs1GGXfT4tDjsdMp396yfFw7fb9c2Pxd3q-_Lm-m5heYnTQpSldUwbQQ0jbtFSWWJF0hCSMa2tWsLWclEJ00nrJBOGCHnjhKRGmo6fFMt9rot6o8bke512Kmqv3hYxPSqdJm8DKdEw65q6Fpy6yjI0qIVFRFe1beeEnbM-7bPGFH9uKU9qE7dpfiirspG8RjarZ9WXvcqmmHOi7v0qQ_VKSr2SUm-k-F-o1IfU</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Stiegler, Christian</creator><creator>Koebsch, Franziska</creator><creator>Ali, Ashehad Ashween</creator><creator>June, Tania</creator><creator>Veldkamp, Edzo</creator><creator>Corre, Marife D.</creator><creator>Koks, Joost</creator><creator>Tjoa, Aiyen</creator><creator>Knohl, Alexander</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8318-8349</orcidid><orcidid>https://orcid.org/0000-0002-7615-8870</orcidid><orcidid>https://orcid.org/0000-0002-0130-2401</orcidid><orcidid>https://orcid.org/0000-0003-1045-7680</orcidid><orcidid>https://orcid.org/0000-0002-7328-306X</orcidid><orcidid>https://orcid.org/0000-0003-0359-2104</orcidid><orcidid>https://orcid.org/0000-0003-2068-3219</orcidid><orcidid>https://orcid.org/0000-0003-0583-9174</orcidid></search><sort><creationdate>202310</creationdate><title>Temporal variation in nitrous oxide ( N 2 O ) fluxes from an oil palm plantation in Indonesia: An ecosystem‐scale analysis</title><author>Stiegler, Christian ; Koebsch, Franziska ; Ali, Ashehad Ashween ; June, Tania ; Veldkamp, Edzo ; Corre, Marife D. ; Koks, Joost ; Tjoa, Aiyen ; Knohl, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-522cd1ab5e81e3c0ce2204e6be0ebb9c49e09c3545bf6cd615bee038d56e86bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon dioxide</topic><topic>Chambers</topic><topic>Diel activity</topic><topic>ecosystem scale emissions</topic><topic>Ecosystems</topic><topic>eddy covariance</topic><topic>Emission</topic><topic>emission factor</topic><topic>Emission measurements</topic><topic>Emissions</topic><topic>Equivalence</topic><topic>Fertilizers</topic><topic>Fluctuations</topic><topic>Gas exchange</topic><topic>global warming potential</topic><topic>Greenhouse gases</topic><topic>Heat flux</topic><topic>hysteresis</topic><topic>Latent heat</topic><topic>Lowlands</topic><topic>Measurement techniques</topic><topic>Nitrogen</topic><topic>Nitrous oxide</topic><topic>Oils & fats</topic><topic>Photosynthesis</topic><topic>Photosynthetically active radiation</topic><topic>Plantations</topic><topic>Potassium</topic><topic>Precipitation</topic><topic>Site selection</topic><topic>Soil conditions</topic><topic>Soil temperature</topic><topic>Soil water</topic><topic>Soils</topic><topic>Temporal variations</topic><topic>Vegetable oils</topic><topic>Vegetation</topic><toplevel>online_resources</toplevel><creatorcontrib>Stiegler, Christian</creatorcontrib><creatorcontrib>Koebsch, Franziska</creatorcontrib><creatorcontrib>Ali, Ashehad Ashween</creatorcontrib><creatorcontrib>June, Tania</creatorcontrib><creatorcontrib>Veldkamp, Edzo</creatorcontrib><creatorcontrib>Corre, Marife D.</creatorcontrib><creatorcontrib>Koks, Joost</creatorcontrib><creatorcontrib>Tjoa, Aiyen</creatorcontrib><creatorcontrib>Knohl, Alexander</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Global change biology. Bioenergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stiegler, Christian</au><au>Koebsch, Franziska</au><au>Ali, Ashehad Ashween</au><au>June, Tania</au><au>Veldkamp, Edzo</au><au>Corre, Marife D.</au><au>Koks, Joost</au><au>Tjoa, Aiyen</au><au>Knohl, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal variation in nitrous oxide ( N 2 O ) fluxes from an oil palm plantation in Indonesia: An ecosystem‐scale analysis</atitle><jtitle>Global change biology. Bioenergy</jtitle><date>2023-10</date><risdate>2023</risdate><volume>15</volume><issue>10</issue><spage>1221</spage><epage>1239</epage><pages>1221-1239</pages><issn>1757-1693</issn><eissn>1757-1707</eissn><abstract>The rapidly growing areal extent of oil palm (
Elaeis guineensis
Jacq.) plantations and their high fertilizer input raises concerns about their role as substantial N
2
O sources. In this study, we present the first eddy covariance (EC) measurements of ecosystem‐scale N
2
O fluxes in an oil palm plantation and combine them with vented soil chamber measurements of point‐scale soil N
2
O fluxes. Based on EC measurements during the period August 2017 to April 2019, the studied oil palm plantation in the tropical lowlands of Jambi Province (Sumatra, Indonesia) is a high source of N
2
O, with average emission of 0.32 ± 0.003 g N
2
O‐N m
−2
year
−1
(149.85 ± 1.40 g CO
2
‐equivalent m
−2
year
−1
). Compared to the EC‐based N
2
O flux, average chamber‐based soil N
2
O fluxes (0.16 ± 0.047 g N
2
O‐N m
−2
year
−1
, 74.93 ± 23.41 g CO
2
‐equivalent m
−2
year
−1
) are significantly (~49%,
p
< 0.05) lower, suggesting that important N
2
O pathways are not covered by the chamber measurements. Conventional chamber‐based N
2
O emission estimates from oil palm up‐scaled to ecosystem level might therefore be substantially underestimated. We show that the dynamic gas exchange of the oil palm canopy with the atmosphere and the oil palms' response to meteorological and soil conditions may play an important but yet widely unexplored role in the N
2
O budget of oil palm plantations. Diel pattern of N
2
O fluxes showed strong causal relationships with photosynthesis‐related variables, i.e. latent heat flux, incoming photosynthetically active radiation and gross primary productivity during day time, and ecosystem respiration and soil temperature during night time. At longer time scales (>2 days), soil temperature and water‐filled pore space gained importance on N
2
O flux variation. These results suggest a plant‐mediated N
2
O transport, providing important input for modelling approaches and strategies to mitigate the negative impact of N
2
O emissions from oil palm cultivation through appropriate site selection and management.</abstract><cop>Oxford</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1111/gcbb.13088</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8318-8349</orcidid><orcidid>https://orcid.org/0000-0002-7615-8870</orcidid><orcidid>https://orcid.org/0000-0002-0130-2401</orcidid><orcidid>https://orcid.org/0000-0003-1045-7680</orcidid><orcidid>https://orcid.org/0000-0002-7328-306X</orcidid><orcidid>https://orcid.org/0000-0003-0359-2104</orcidid><orcidid>https://orcid.org/0000-0003-2068-3219</orcidid><orcidid>https://orcid.org/0000-0003-0583-9174</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-1693 |
ispartof | Global change biology. Bioenergy, 2023-10, Vol.15 (10), p.1221-1239 |
issn | 1757-1693 1757-1707 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_581cd87753ef4c10b0a5c000d499fd5c |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Carbon dioxide Chambers Diel activity ecosystem scale emissions Ecosystems eddy covariance Emission emission factor Emission measurements Emissions Equivalence Fertilizers Fluctuations Gas exchange global warming potential Greenhouse gases Heat flux hysteresis Latent heat Lowlands Measurement techniques Nitrogen Nitrous oxide Oils & fats Photosynthesis Photosynthetically active radiation Plantations Potassium Precipitation Site selection Soil conditions Soil temperature Soil water Soils Temporal variations Vegetable oils Vegetation |
title | Temporal variation in nitrous oxide ( N 2 O ) fluxes from an oil palm plantation in Indonesia: An ecosystem‐scale analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20variation%20in%20nitrous%20oxide%20(%20N%202%20O%20)%20fluxes%20from%20an%20oil%20palm%20plantation%20in%20Indonesia:%20An%20ecosystem%E2%80%90scale%20analysis&rft.jtitle=Global%20change%20biology.%20Bioenergy&rft.au=Stiegler,%20Christian&rft.date=2023-10&rft.volume=15&rft.issue=10&rft.spage=1221&rft.epage=1239&rft.pages=1221-1239&rft.issn=1757-1693&rft.eissn=1757-1707&rft_id=info:doi/10.1111/gcbb.13088&rft_dat=%3Cproquest_doaj_%3E2863701000%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-522cd1ab5e81e3c0ce2204e6be0ebb9c49e09c3545bf6cd615bee038d56e86bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2863701000&rft_id=info:pmid/&rfr_iscdi=true |