Loading…

Temporal variation in nitrous oxide ( N 2 O ) fluxes from an oil palm plantation in Indonesia: An ecosystem‐scale analysis

The rapidly growing areal extent of oil palm ( Elaeis guineensis Jacq.) plantations and their high fertilizer input raises concerns about their role as substantial N 2 O sources. In this study, we present the first eddy covariance (EC) measurements of ecosystem‐scale N 2 O fluxes in an oil palm plan...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology. Bioenergy 2023-10, Vol.15 (10), p.1221-1239
Main Authors: Stiegler, Christian, Koebsch, Franziska, Ali, Ashehad Ashween, June, Tania, Veldkamp, Edzo, Corre, Marife D., Koks, Joost, Tjoa, Aiyen, Knohl, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c320t-522cd1ab5e81e3c0ce2204e6be0ebb9c49e09c3545bf6cd615bee038d56e86bf3
container_end_page 1239
container_issue 10
container_start_page 1221
container_title Global change biology. Bioenergy
container_volume 15
creator Stiegler, Christian
Koebsch, Franziska
Ali, Ashehad Ashween
June, Tania
Veldkamp, Edzo
Corre, Marife D.
Koks, Joost
Tjoa, Aiyen
Knohl, Alexander
description The rapidly growing areal extent of oil palm ( Elaeis guineensis Jacq.) plantations and their high fertilizer input raises concerns about their role as substantial N 2 O sources. In this study, we present the first eddy covariance (EC) measurements of ecosystem‐scale N 2 O fluxes in an oil palm plantation and combine them with vented soil chamber measurements of point‐scale soil N 2 O fluxes. Based on EC measurements during the period August 2017 to April 2019, the studied oil palm plantation in the tropical lowlands of Jambi Province (Sumatra, Indonesia) is a high source of N 2 O, with average emission of 0.32 ± 0.003 g N 2 O‐N m −2  year −1 (149.85 ± 1.40 g CO 2 ‐equivalent m −2  year −1 ). Compared to the EC‐based N 2 O flux, average chamber‐based soil N 2 O fluxes (0.16 ± 0.047 g N 2 O‐N m −2  year −1 , 74.93 ± 23.41 g CO 2 ‐equivalent m −2  year −1 ) are significantly (~49%, p  
doi_str_mv 10.1111/gcbb.13088
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_581cd87753ef4c10b0a5c000d499fd5c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_581cd87753ef4c10b0a5c000d499fd5c</doaj_id><sourcerecordid>2863701000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-522cd1ab5e81e3c0ce2204e6be0ebb9c49e09c3545bf6cd615bee038d56e86bf3</originalsourceid><addsrcrecordid>eNo9kc9q3DAQxk1JoPl3yRMM9NIUNhlZlmz3FkLaLoTsZXMW-jMOWmTLlbwhCz30EfqMeZI62TZzmWH4vm8YfkVxzvCSzXX1aI25ZByb5kNxxGpRL1iN9cH_Wbb8Y3Gc8wZRCsnao-LXmvoxJh3gSSevJx8H8AMMfkpxmyE-e0fwGe6hhBVcQBe2z5ShS7EHPUD0AUYdehiDHqZ393JwcaDs9Ve4HoBszLs8Uf_y-0-2OtDs1GGXfT4tDjsdMp396yfFw7fb9c2Pxd3q-_Lm-m5heYnTQpSldUwbQQ0jbtFSWWJF0hCSMa2tWsLWclEJ00nrJBOGCHnjhKRGmo6fFMt9rot6o8bke512Kmqv3hYxPSqdJm8DKdEw65q6Fpy6yjI0qIVFRFe1beeEnbM-7bPGFH9uKU9qE7dpfiirspG8RjarZ9WXvcqmmHOi7v0qQ_VKSr2SUm-k-F-o1IfU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863701000</pqid></control><display><type>article</type><title>Temporal variation in nitrous oxide ( N 2 O ) fluxes from an oil palm plantation in Indonesia: An ecosystem‐scale analysis</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Stiegler, Christian ; Koebsch, Franziska ; Ali, Ashehad Ashween ; June, Tania ; Veldkamp, Edzo ; Corre, Marife D. ; Koks, Joost ; Tjoa, Aiyen ; Knohl, Alexander</creator><creatorcontrib>Stiegler, Christian ; Koebsch, Franziska ; Ali, Ashehad Ashween ; June, Tania ; Veldkamp, Edzo ; Corre, Marife D. ; Koks, Joost ; Tjoa, Aiyen ; Knohl, Alexander</creatorcontrib><description>The rapidly growing areal extent of oil palm ( Elaeis guineensis Jacq.) plantations and their high fertilizer input raises concerns about their role as substantial N 2 O sources. In this study, we present the first eddy covariance (EC) measurements of ecosystem‐scale N 2 O fluxes in an oil palm plantation and combine them with vented soil chamber measurements of point‐scale soil N 2 O fluxes. Based on EC measurements during the period August 2017 to April 2019, the studied oil palm plantation in the tropical lowlands of Jambi Province (Sumatra, Indonesia) is a high source of N 2 O, with average emission of 0.32 ± 0.003 g N 2 O‐N m −2  year −1 (149.85 ± 1.40 g CO 2 ‐equivalent m −2  year −1 ). Compared to the EC‐based N 2 O flux, average chamber‐based soil N 2 O fluxes (0.16 ± 0.047 g N 2 O‐N m −2  year −1 , 74.93 ± 23.41 g CO 2 ‐equivalent m −2  year −1 ) are significantly (~49%, p  &lt; 0.05) lower, suggesting that important N 2 O pathways are not covered by the chamber measurements. Conventional chamber‐based N 2 O emission estimates from oil palm up‐scaled to ecosystem level might therefore be substantially underestimated. We show that the dynamic gas exchange of the oil palm canopy with the atmosphere and the oil palms' response to meteorological and soil conditions may play an important but yet widely unexplored role in the N 2 O budget of oil palm plantations. Diel pattern of N 2 O fluxes showed strong causal relationships with photosynthesis‐related variables, i.e. latent heat flux, incoming photosynthetically active radiation and gross primary productivity during day time, and ecosystem respiration and soil temperature during night time. At longer time scales (&gt;2 days), soil temperature and water‐filled pore space gained importance on N 2 O flux variation. These results suggest a plant‐mediated N 2 O transport, providing important input for modelling approaches and strategies to mitigate the negative impact of N 2 O emissions from oil palm cultivation through appropriate site selection and management.</description><identifier>ISSN: 1757-1693</identifier><identifier>EISSN: 1757-1707</identifier><identifier>DOI: 10.1111/gcbb.13088</identifier><language>eng</language><publisher>Oxford: John Wiley &amp; Sons, Inc</publisher><subject>Carbon dioxide ; Chambers ; Diel activity ; ecosystem scale emissions ; Ecosystems ; eddy covariance ; Emission ; emission factor ; Emission measurements ; Emissions ; Equivalence ; Fertilizers ; Fluctuations ; Gas exchange ; global warming potential ; Greenhouse gases ; Heat flux ; hysteresis ; Latent heat ; Lowlands ; Measurement techniques ; Nitrogen ; Nitrous oxide ; Oils &amp; fats ; Photosynthesis ; Photosynthetically active radiation ; Plantations ; Potassium ; Precipitation ; Site selection ; Soil conditions ; Soil temperature ; Soil water ; Soils ; Temporal variations ; Vegetable oils ; Vegetation</subject><ispartof>Global change biology. Bioenergy, 2023-10, Vol.15 (10), p.1221-1239</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-522cd1ab5e81e3c0ce2204e6be0ebb9c49e09c3545bf6cd615bee038d56e86bf3</cites><orcidid>0000-0002-8318-8349 ; 0000-0002-7615-8870 ; 0000-0002-0130-2401 ; 0000-0003-1045-7680 ; 0000-0002-7328-306X ; 0000-0003-0359-2104 ; 0000-0003-2068-3219 ; 0000-0003-0583-9174</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2863701000/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2863701000?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Stiegler, Christian</creatorcontrib><creatorcontrib>Koebsch, Franziska</creatorcontrib><creatorcontrib>Ali, Ashehad Ashween</creatorcontrib><creatorcontrib>June, Tania</creatorcontrib><creatorcontrib>Veldkamp, Edzo</creatorcontrib><creatorcontrib>Corre, Marife D.</creatorcontrib><creatorcontrib>Koks, Joost</creatorcontrib><creatorcontrib>Tjoa, Aiyen</creatorcontrib><creatorcontrib>Knohl, Alexander</creatorcontrib><title>Temporal variation in nitrous oxide ( N 2 O ) fluxes from an oil palm plantation in Indonesia: An ecosystem‐scale analysis</title><title>Global change biology. Bioenergy</title><description>The rapidly growing areal extent of oil palm ( Elaeis guineensis Jacq.) plantations and their high fertilizer input raises concerns about their role as substantial N 2 O sources. In this study, we present the first eddy covariance (EC) measurements of ecosystem‐scale N 2 O fluxes in an oil palm plantation and combine them with vented soil chamber measurements of point‐scale soil N 2 O fluxes. Based on EC measurements during the period August 2017 to April 2019, the studied oil palm plantation in the tropical lowlands of Jambi Province (Sumatra, Indonesia) is a high source of N 2 O, with average emission of 0.32 ± 0.003 g N 2 O‐N m −2  year −1 (149.85 ± 1.40 g CO 2 ‐equivalent m −2  year −1 ). Compared to the EC‐based N 2 O flux, average chamber‐based soil N 2 O fluxes (0.16 ± 0.047 g N 2 O‐N m −2  year −1 , 74.93 ± 23.41 g CO 2 ‐equivalent m −2  year −1 ) are significantly (~49%, p  &lt; 0.05) lower, suggesting that important N 2 O pathways are not covered by the chamber measurements. Conventional chamber‐based N 2 O emission estimates from oil palm up‐scaled to ecosystem level might therefore be substantially underestimated. We show that the dynamic gas exchange of the oil palm canopy with the atmosphere and the oil palms' response to meteorological and soil conditions may play an important but yet widely unexplored role in the N 2 O budget of oil palm plantations. Diel pattern of N 2 O fluxes showed strong causal relationships with photosynthesis‐related variables, i.e. latent heat flux, incoming photosynthetically active radiation and gross primary productivity during day time, and ecosystem respiration and soil temperature during night time. At longer time scales (&gt;2 days), soil temperature and water‐filled pore space gained importance on N 2 O flux variation. These results suggest a plant‐mediated N 2 O transport, providing important input for modelling approaches and strategies to mitigate the negative impact of N 2 O emissions from oil palm cultivation through appropriate site selection and management.</description><subject>Carbon dioxide</subject><subject>Chambers</subject><subject>Diel activity</subject><subject>ecosystem scale emissions</subject><subject>Ecosystems</subject><subject>eddy covariance</subject><subject>Emission</subject><subject>emission factor</subject><subject>Emission measurements</subject><subject>Emissions</subject><subject>Equivalence</subject><subject>Fertilizers</subject><subject>Fluctuations</subject><subject>Gas exchange</subject><subject>global warming potential</subject><subject>Greenhouse gases</subject><subject>Heat flux</subject><subject>hysteresis</subject><subject>Latent heat</subject><subject>Lowlands</subject><subject>Measurement techniques</subject><subject>Nitrogen</subject><subject>Nitrous oxide</subject><subject>Oils &amp; fats</subject><subject>Photosynthesis</subject><subject>Photosynthetically active radiation</subject><subject>Plantations</subject><subject>Potassium</subject><subject>Precipitation</subject><subject>Site selection</subject><subject>Soil conditions</subject><subject>Soil temperature</subject><subject>Soil water</subject><subject>Soils</subject><subject>Temporal variations</subject><subject>Vegetable oils</subject><subject>Vegetation</subject><issn>1757-1693</issn><issn>1757-1707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNo9kc9q3DAQxk1JoPl3yRMM9NIUNhlZlmz3FkLaLoTsZXMW-jMOWmTLlbwhCz30EfqMeZI62TZzmWH4vm8YfkVxzvCSzXX1aI25ZByb5kNxxGpRL1iN9cH_Wbb8Y3Gc8wZRCsnao-LXmvoxJh3gSSevJx8H8AMMfkpxmyE-e0fwGe6hhBVcQBe2z5ShS7EHPUD0AUYdehiDHqZ393JwcaDs9Ve4HoBszLs8Uf_y-0-2OtDs1GGXfT4tDjsdMp396yfFw7fb9c2Pxd3q-_Lm-m5heYnTQpSldUwbQQ0jbtFSWWJF0hCSMa2tWsLWclEJ00nrJBOGCHnjhKRGmo6fFMt9rot6o8bke512Kmqv3hYxPSqdJm8DKdEw65q6Fpy6yjI0qIVFRFe1beeEnbM-7bPGFH9uKU9qE7dpfiirspG8RjarZ9WXvcqmmHOi7v0qQ_VKSr2SUm-k-F-o1IfU</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Stiegler, Christian</creator><creator>Koebsch, Franziska</creator><creator>Ali, Ashehad Ashween</creator><creator>June, Tania</creator><creator>Veldkamp, Edzo</creator><creator>Corre, Marife D.</creator><creator>Koks, Joost</creator><creator>Tjoa, Aiyen</creator><creator>Knohl, Alexander</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8318-8349</orcidid><orcidid>https://orcid.org/0000-0002-7615-8870</orcidid><orcidid>https://orcid.org/0000-0002-0130-2401</orcidid><orcidid>https://orcid.org/0000-0003-1045-7680</orcidid><orcidid>https://orcid.org/0000-0002-7328-306X</orcidid><orcidid>https://orcid.org/0000-0003-0359-2104</orcidid><orcidid>https://orcid.org/0000-0003-2068-3219</orcidid><orcidid>https://orcid.org/0000-0003-0583-9174</orcidid></search><sort><creationdate>202310</creationdate><title>Temporal variation in nitrous oxide ( N 2 O ) fluxes from an oil palm plantation in Indonesia: An ecosystem‐scale analysis</title><author>Stiegler, Christian ; Koebsch, Franziska ; Ali, Ashehad Ashween ; June, Tania ; Veldkamp, Edzo ; Corre, Marife D. ; Koks, Joost ; Tjoa, Aiyen ; Knohl, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-522cd1ab5e81e3c0ce2204e6be0ebb9c49e09c3545bf6cd615bee038d56e86bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon dioxide</topic><topic>Chambers</topic><topic>Diel activity</topic><topic>ecosystem scale emissions</topic><topic>Ecosystems</topic><topic>eddy covariance</topic><topic>Emission</topic><topic>emission factor</topic><topic>Emission measurements</topic><topic>Emissions</topic><topic>Equivalence</topic><topic>Fertilizers</topic><topic>Fluctuations</topic><topic>Gas exchange</topic><topic>global warming potential</topic><topic>Greenhouse gases</topic><topic>Heat flux</topic><topic>hysteresis</topic><topic>Latent heat</topic><topic>Lowlands</topic><topic>Measurement techniques</topic><topic>Nitrogen</topic><topic>Nitrous oxide</topic><topic>Oils &amp; fats</topic><topic>Photosynthesis</topic><topic>Photosynthetically active radiation</topic><topic>Plantations</topic><topic>Potassium</topic><topic>Precipitation</topic><topic>Site selection</topic><topic>Soil conditions</topic><topic>Soil temperature</topic><topic>Soil water</topic><topic>Soils</topic><topic>Temporal variations</topic><topic>Vegetable oils</topic><topic>Vegetation</topic><toplevel>online_resources</toplevel><creatorcontrib>Stiegler, Christian</creatorcontrib><creatorcontrib>Koebsch, Franziska</creatorcontrib><creatorcontrib>Ali, Ashehad Ashween</creatorcontrib><creatorcontrib>June, Tania</creatorcontrib><creatorcontrib>Veldkamp, Edzo</creatorcontrib><creatorcontrib>Corre, Marife D.</creatorcontrib><creatorcontrib>Koks, Joost</creatorcontrib><creatorcontrib>Tjoa, Aiyen</creatorcontrib><creatorcontrib>Knohl, Alexander</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Global change biology. Bioenergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stiegler, Christian</au><au>Koebsch, Franziska</au><au>Ali, Ashehad Ashween</au><au>June, Tania</au><au>Veldkamp, Edzo</au><au>Corre, Marife D.</au><au>Koks, Joost</au><au>Tjoa, Aiyen</au><au>Knohl, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal variation in nitrous oxide ( N 2 O ) fluxes from an oil palm plantation in Indonesia: An ecosystem‐scale analysis</atitle><jtitle>Global change biology. Bioenergy</jtitle><date>2023-10</date><risdate>2023</risdate><volume>15</volume><issue>10</issue><spage>1221</spage><epage>1239</epage><pages>1221-1239</pages><issn>1757-1693</issn><eissn>1757-1707</eissn><abstract>The rapidly growing areal extent of oil palm ( Elaeis guineensis Jacq.) plantations and their high fertilizer input raises concerns about their role as substantial N 2 O sources. In this study, we present the first eddy covariance (EC) measurements of ecosystem‐scale N 2 O fluxes in an oil palm plantation and combine them with vented soil chamber measurements of point‐scale soil N 2 O fluxes. Based on EC measurements during the period August 2017 to April 2019, the studied oil palm plantation in the tropical lowlands of Jambi Province (Sumatra, Indonesia) is a high source of N 2 O, with average emission of 0.32 ± 0.003 g N 2 O‐N m −2  year −1 (149.85 ± 1.40 g CO 2 ‐equivalent m −2  year −1 ). Compared to the EC‐based N 2 O flux, average chamber‐based soil N 2 O fluxes (0.16 ± 0.047 g N 2 O‐N m −2  year −1 , 74.93 ± 23.41 g CO 2 ‐equivalent m −2  year −1 ) are significantly (~49%, p  &lt; 0.05) lower, suggesting that important N 2 O pathways are not covered by the chamber measurements. Conventional chamber‐based N 2 O emission estimates from oil palm up‐scaled to ecosystem level might therefore be substantially underestimated. We show that the dynamic gas exchange of the oil palm canopy with the atmosphere and the oil palms' response to meteorological and soil conditions may play an important but yet widely unexplored role in the N 2 O budget of oil palm plantations. Diel pattern of N 2 O fluxes showed strong causal relationships with photosynthesis‐related variables, i.e. latent heat flux, incoming photosynthetically active radiation and gross primary productivity during day time, and ecosystem respiration and soil temperature during night time. At longer time scales (&gt;2 days), soil temperature and water‐filled pore space gained importance on N 2 O flux variation. These results suggest a plant‐mediated N 2 O transport, providing important input for modelling approaches and strategies to mitigate the negative impact of N 2 O emissions from oil palm cultivation through appropriate site selection and management.</abstract><cop>Oxford</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/gcbb.13088</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8318-8349</orcidid><orcidid>https://orcid.org/0000-0002-7615-8870</orcidid><orcidid>https://orcid.org/0000-0002-0130-2401</orcidid><orcidid>https://orcid.org/0000-0003-1045-7680</orcidid><orcidid>https://orcid.org/0000-0002-7328-306X</orcidid><orcidid>https://orcid.org/0000-0003-0359-2104</orcidid><orcidid>https://orcid.org/0000-0003-2068-3219</orcidid><orcidid>https://orcid.org/0000-0003-0583-9174</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-1693
ispartof Global change biology. Bioenergy, 2023-10, Vol.15 (10), p.1221-1239
issn 1757-1693
1757-1707
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_581cd87753ef4c10b0a5c000d499fd5c
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Carbon dioxide
Chambers
Diel activity
ecosystem scale emissions
Ecosystems
eddy covariance
Emission
emission factor
Emission measurements
Emissions
Equivalence
Fertilizers
Fluctuations
Gas exchange
global warming potential
Greenhouse gases
Heat flux
hysteresis
Latent heat
Lowlands
Measurement techniques
Nitrogen
Nitrous oxide
Oils & fats
Photosynthesis
Photosynthetically active radiation
Plantations
Potassium
Precipitation
Site selection
Soil conditions
Soil temperature
Soil water
Soils
Temporal variations
Vegetable oils
Vegetation
title Temporal variation in nitrous oxide ( N 2 O ) fluxes from an oil palm plantation in Indonesia: An ecosystem‐scale analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20variation%20in%20nitrous%20oxide%20(%20N%202%20O%20)%20fluxes%20from%20an%20oil%20palm%20plantation%20in%20Indonesia:%20An%20ecosystem%E2%80%90scale%20analysis&rft.jtitle=Global%20change%20biology.%20Bioenergy&rft.au=Stiegler,%20Christian&rft.date=2023-10&rft.volume=15&rft.issue=10&rft.spage=1221&rft.epage=1239&rft.pages=1221-1239&rft.issn=1757-1693&rft.eissn=1757-1707&rft_id=info:doi/10.1111/gcbb.13088&rft_dat=%3Cproquest_doaj_%3E2863701000%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-522cd1ab5e81e3c0ce2204e6be0ebb9c49e09c3545bf6cd615bee038d56e86bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2863701000&rft_id=info:pmid/&rfr_iscdi=true