Loading…

Modeling the Effects of Anthropogenic Land Cover Changes to the Main Hydrometeorological Factors in a Regional Watershed, Central Greece

In this study, the physically-based hydrological model MIKE SHE was employed to investigate the effects of anthropogenic land cover changes to the hydrological cycle components of a regional watershed in Central Greece. Three case studies based on the land cover of the years 1960, 1990, and 2018 wer...

Full description

Saved in:
Bibliographic Details
Published in:Climate (Basel) 2019-11, Vol.7 (11), p.129
Main Authors: Mentzafou, Angeliki, Varlas, George, Dimitriou, Elias, Papadopoulos, Anastasios, Pytharoulis, Ioannis, Katsafados, Petros
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, the physically-based hydrological model MIKE SHE was employed to investigate the effects of anthropogenic land cover changes to the hydrological cycle components of a regional watershed in Central Greece. Three case studies based on the land cover of the years 1960, 1990, and 2018 were examined. Copernicus Climate Change Service E-OBS gridded meteorological data for 45 hydrological years were used as forcing for the model. Evaluation against observational data yielded sufficient quality for daily air temperature and precipitation. Simulation results demonstrated that the climatic variabilities primarily in precipitation and secondarily in air temperature affected basin-averaged annual actual evapotranspiration and average annual river discharge. Nevertheless, land cover effects can locally outflank the impact of climatic variability as indicated by the low interannual variabilities of differences in annual actual evapotranspiration among case studies. The transition from forest to pastures or agricultural land reduced annual actual evapotranspiration and increased average annual river discharge while intensifying the vulnerability to hydrometeorological-related hazards such as droughts or floods. Hence, the quantitative assessment of land cover effects presented in this study can contribute to the design and implementation of successful land cover and climate change mitigation and adaptation policies.
ISSN:2225-1154
2225-1154
DOI:10.3390/cli7110129