Loading…

Tumor microenvironments self-activated nanoscale metal-organic frameworks for ferroptosis based cancer chemodynamic/photothermal/chemo therapy

Ferroptosis, as a newly discovered cell death form, has become an attractive target for precision cancer therapy. Several ferroptosis therapy strategies based on nanotechnology have been reported by either increasing intracellular iron levels or by inhibition of glutathione (GSH)-dependent lipid hyd...

Full description

Saved in:
Bibliographic Details
Published in:Acta pharmaceutica Sinica. B 2021-10, Vol.11 (10), p.3231-3243
Main Authors: Liang, Yu, Zhang, Li, Peng, Chao, Zhang, Shiyu, Chen, Siwen, Qian, Xin, Luo, Wanxian, Dan, Qing, Ren, Yongyan, Li, Yingjia, Zhao, Bingxia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c498t-cd1e0b8f0d199025b0e3f5dc37c0550bae81ee77194c6e42653e111f8f8e408b3
cites cdi_FETCH-LOGICAL-c498t-cd1e0b8f0d199025b0e3f5dc37c0550bae81ee77194c6e42653e111f8f8e408b3
container_end_page 3243
container_issue 10
container_start_page 3231
container_title Acta pharmaceutica Sinica. B
container_volume 11
creator Liang, Yu
Zhang, Li
Peng, Chao
Zhang, Shiyu
Chen, Siwen
Qian, Xin
Luo, Wanxian
Dan, Qing
Ren, Yongyan
Li, Yingjia
Zhao, Bingxia
description Ferroptosis, as a newly discovered cell death form, has become an attractive target for precision cancer therapy. Several ferroptosis therapy strategies based on nanotechnology have been reported by either increasing intracellular iron levels or by inhibition of glutathione (GSH)-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4). However, the strategy by simultaneous iron delivery and GPX4 inhibition has rarely been reported. Herein, novel tumor microenvironments (TME)-activated metal-organic frameworks involving Fe & Cu ions bridged by disulfide bonds with PEGylation (FCSP MOFs) were developed, which would be degraded specifically under the redox TME, simultaneously achieving GSH-depletion induced GPX4 inactivation and releasing Fe ions to produce ROS via Fenton reaction, therefore causing ferroptosis. More ROS could be generated by the acceleration of Fenton reaction due to the released Cu ions and the intrinsic photothermal capability of FCSP MOFs. The overexpressed GSH and H2O2 in TME could ensure the specific TME self-activated therapy. Better tumor therapeutic efficiency could be achieved by doxorubicin (DOX) loading since it can not only cause apoptosis, but also indirectly produce H2O2 to amplify Fenton reaction. Remarkable anti-tumor effect of obtained FCSP@DOX MOFs was verified via both in vitro and in vivo assays. FCSP@DOX achieved excellent anti-tumor efficiency both in vitro and in vivo with minimized damage to normal tissues by taking the synergy of GSH-depletion assistant GPX4 inactivation and Fenton/Fenton-like reaction induced ferroptosis-based chemodynamic/photothermal/chemo therapy. [Display omitted]
doi_str_mv 10.1016/j.apsb.2021.01.016
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_58414b88747d4709bad8472746ec755e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211383521000198</els_id><doaj_id>oai_doaj_org_article_58414b88747d4709bad8472746ec755e</doaj_id><sourcerecordid>2593026631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-cd1e0b8f0d199025b0e3f5dc37c0550bae81ee77194c6e42653e111f8f8e408b3</originalsourceid><addsrcrecordid>eNp9kktr3DAQgE1paUKaP9CTj714V09LhlIooY9AoJf0LMbyOKutZbmSdsv-if7mytkQyKXDgB4z8w3zqKr3lGwooe12v4El9RtGGN2QVdtX1SVjlDZcC_76-c7lRXWd0p4UaQljSr6tLrhQrOOUXVZ_7w8-xNo7GwPORxfD7HHOqU44jQ3Y7I6QcahnmEOyMGHtMcPUhPgAs7P1GMHjnxB_pXosnBFjDEsOyaW6h1QCLcwWY2136MNwmqFk2i67kEPeYfQwbR8t9fqC5fSuejPClPD66byqfn79cn_zvbn78e325vNdY0Wnc2MHiqTXIxlo1xEme4J8lIPlyhIpSQ-oKaJStBO2RcFayZFSOupRoyC651fV7Zk7BNibJToP8WQCOPP4UaozELOzExqpBRW91kqoQSjS9TDo0j4lWrRKSiysT2fWcug9Dra0L8L0AvrSMrudeQhHo6VoixTAhydADL8PmLLxLlmcJpgxHJJhsuOEFUdaXNnZtYwrpYjjcxpKzLoXZm_WvTDrXhiy6sr_eA7C0tGjw2iSdVjGMriINpeS3f_C_wFllMQy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593026631</pqid></control><display><type>article</type><title>Tumor microenvironments self-activated nanoscale metal-organic frameworks for ferroptosis based cancer chemodynamic/photothermal/chemo therapy</title><source>ScienceDirect Journals</source><source>PubMed Central</source><creator>Liang, Yu ; Zhang, Li ; Peng, Chao ; Zhang, Shiyu ; Chen, Siwen ; Qian, Xin ; Luo, Wanxian ; Dan, Qing ; Ren, Yongyan ; Li, Yingjia ; Zhao, Bingxia</creator><creatorcontrib>Liang, Yu ; Zhang, Li ; Peng, Chao ; Zhang, Shiyu ; Chen, Siwen ; Qian, Xin ; Luo, Wanxian ; Dan, Qing ; Ren, Yongyan ; Li, Yingjia ; Zhao, Bingxia</creatorcontrib><description>Ferroptosis, as a newly discovered cell death form, has become an attractive target for precision cancer therapy. Several ferroptosis therapy strategies based on nanotechnology have been reported by either increasing intracellular iron levels or by inhibition of glutathione (GSH)-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4). However, the strategy by simultaneous iron delivery and GPX4 inhibition has rarely been reported. Herein, novel tumor microenvironments (TME)-activated metal-organic frameworks involving Fe &amp; Cu ions bridged by disulfide bonds with PEGylation (FCSP MOFs) were developed, which would be degraded specifically under the redox TME, simultaneously achieving GSH-depletion induced GPX4 inactivation and releasing Fe ions to produce ROS via Fenton reaction, therefore causing ferroptosis. More ROS could be generated by the acceleration of Fenton reaction due to the released Cu ions and the intrinsic photothermal capability of FCSP MOFs. The overexpressed GSH and H2O2 in TME could ensure the specific TME self-activated therapy. Better tumor therapeutic efficiency could be achieved by doxorubicin (DOX) loading since it can not only cause apoptosis, but also indirectly produce H2O2 to amplify Fenton reaction. Remarkable anti-tumor effect of obtained FCSP@DOX MOFs was verified via both in vitro and in vivo assays. FCSP@DOX achieved excellent anti-tumor efficiency both in vitro and in vivo with minimized damage to normal tissues by taking the synergy of GSH-depletion assistant GPX4 inactivation and Fenton/Fenton-like reaction induced ferroptosis-based chemodynamic/photothermal/chemo therapy. [Display omitted]</description><identifier>ISSN: 2211-3835</identifier><identifier>EISSN: 2211-3843</identifier><identifier>DOI: 10.1016/j.apsb.2021.01.016</identifier><identifier>PMID: 34729312</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Drug delivery ; Fenton reaction ; Ferroptosis ; GSH depletion ; Metal-organic frameworks (MOFs) ; Original ; Tumor microenvironments</subject><ispartof>Acta pharmaceutica Sinica. B, 2021-10, Vol.11 (10), p.3231-3243</ispartof><rights>2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences</rights><rights>2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-cd1e0b8f0d199025b0e3f5dc37c0550bae81ee77194c6e42653e111f8f8e408b3</citedby><cites>FETCH-LOGICAL-c498t-cd1e0b8f0d199025b0e3f5dc37c0550bae81ee77194c6e42653e111f8f8e408b3</cites><orcidid>0000-0003-1095-5719 ; 0000-0001-8027-9512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546666/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2211383521000198$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids></links><search><creatorcontrib>Liang, Yu</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Peng, Chao</creatorcontrib><creatorcontrib>Zhang, Shiyu</creatorcontrib><creatorcontrib>Chen, Siwen</creatorcontrib><creatorcontrib>Qian, Xin</creatorcontrib><creatorcontrib>Luo, Wanxian</creatorcontrib><creatorcontrib>Dan, Qing</creatorcontrib><creatorcontrib>Ren, Yongyan</creatorcontrib><creatorcontrib>Li, Yingjia</creatorcontrib><creatorcontrib>Zhao, Bingxia</creatorcontrib><title>Tumor microenvironments self-activated nanoscale metal-organic frameworks for ferroptosis based cancer chemodynamic/photothermal/chemo therapy</title><title>Acta pharmaceutica Sinica. B</title><description>Ferroptosis, as a newly discovered cell death form, has become an attractive target for precision cancer therapy. Several ferroptosis therapy strategies based on nanotechnology have been reported by either increasing intracellular iron levels or by inhibition of glutathione (GSH)-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4). However, the strategy by simultaneous iron delivery and GPX4 inhibition has rarely been reported. Herein, novel tumor microenvironments (TME)-activated metal-organic frameworks involving Fe &amp; Cu ions bridged by disulfide bonds with PEGylation (FCSP MOFs) were developed, which would be degraded specifically under the redox TME, simultaneously achieving GSH-depletion induced GPX4 inactivation and releasing Fe ions to produce ROS via Fenton reaction, therefore causing ferroptosis. More ROS could be generated by the acceleration of Fenton reaction due to the released Cu ions and the intrinsic photothermal capability of FCSP MOFs. The overexpressed GSH and H2O2 in TME could ensure the specific TME self-activated therapy. Better tumor therapeutic efficiency could be achieved by doxorubicin (DOX) loading since it can not only cause apoptosis, but also indirectly produce H2O2 to amplify Fenton reaction. Remarkable anti-tumor effect of obtained FCSP@DOX MOFs was verified via both in vitro and in vivo assays. FCSP@DOX achieved excellent anti-tumor efficiency both in vitro and in vivo with minimized damage to normal tissues by taking the synergy of GSH-depletion assistant GPX4 inactivation and Fenton/Fenton-like reaction induced ferroptosis-based chemodynamic/photothermal/chemo therapy. [Display omitted]</description><subject>Drug delivery</subject><subject>Fenton reaction</subject><subject>Ferroptosis</subject><subject>GSH depletion</subject><subject>Metal-organic frameworks (MOFs)</subject><subject>Original</subject><subject>Tumor microenvironments</subject><issn>2211-3835</issn><issn>2211-3843</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kktr3DAQgE1paUKaP9CTj714V09LhlIooY9AoJf0LMbyOKutZbmSdsv-if7mytkQyKXDgB4z8w3zqKr3lGwooe12v4El9RtGGN2QVdtX1SVjlDZcC_76-c7lRXWd0p4UaQljSr6tLrhQrOOUXVZ_7w8-xNo7GwPORxfD7HHOqU44jQ3Y7I6QcahnmEOyMGHtMcPUhPgAs7P1GMHjnxB_pXosnBFjDEsOyaW6h1QCLcwWY2136MNwmqFk2i67kEPeYfQwbR8t9fqC5fSuejPClPD66byqfn79cn_zvbn78e325vNdY0Wnc2MHiqTXIxlo1xEme4J8lIPlyhIpSQ-oKaJStBO2RcFayZFSOupRoyC651fV7Zk7BNibJToP8WQCOPP4UaozELOzExqpBRW91kqoQSjS9TDo0j4lWrRKSiysT2fWcug9Dra0L8L0AvrSMrudeQhHo6VoixTAhydADL8PmLLxLlmcJpgxHJJhsuOEFUdaXNnZtYwrpYjjcxpKzLoXZm_WvTDrXhiy6sr_eA7C0tGjw2iSdVjGMriINpeS3f_C_wFllMQy</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Liang, Yu</creator><creator>Zhang, Li</creator><creator>Peng, Chao</creator><creator>Zhang, Shiyu</creator><creator>Chen, Siwen</creator><creator>Qian, Xin</creator><creator>Luo, Wanxian</creator><creator>Dan, Qing</creator><creator>Ren, Yongyan</creator><creator>Li, Yingjia</creator><creator>Zhao, Bingxia</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1095-5719</orcidid><orcidid>https://orcid.org/0000-0001-8027-9512</orcidid></search><sort><creationdate>20211001</creationdate><title>Tumor microenvironments self-activated nanoscale metal-organic frameworks for ferroptosis based cancer chemodynamic/photothermal/chemo therapy</title><author>Liang, Yu ; Zhang, Li ; Peng, Chao ; Zhang, Shiyu ; Chen, Siwen ; Qian, Xin ; Luo, Wanxian ; Dan, Qing ; Ren, Yongyan ; Li, Yingjia ; Zhao, Bingxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-cd1e0b8f0d199025b0e3f5dc37c0550bae81ee77194c6e42653e111f8f8e408b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Drug delivery</topic><topic>Fenton reaction</topic><topic>Ferroptosis</topic><topic>GSH depletion</topic><topic>Metal-organic frameworks (MOFs)</topic><topic>Original</topic><topic>Tumor microenvironments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Yu</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Peng, Chao</creatorcontrib><creatorcontrib>Zhang, Shiyu</creatorcontrib><creatorcontrib>Chen, Siwen</creatorcontrib><creatorcontrib>Qian, Xin</creatorcontrib><creatorcontrib>Luo, Wanxian</creatorcontrib><creatorcontrib>Dan, Qing</creatorcontrib><creatorcontrib>Ren, Yongyan</creatorcontrib><creatorcontrib>Li, Yingjia</creatorcontrib><creatorcontrib>Zhao, Bingxia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Acta pharmaceutica Sinica. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Yu</au><au>Zhang, Li</au><au>Peng, Chao</au><au>Zhang, Shiyu</au><au>Chen, Siwen</au><au>Qian, Xin</au><au>Luo, Wanxian</au><au>Dan, Qing</au><au>Ren, Yongyan</au><au>Li, Yingjia</au><au>Zhao, Bingxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumor microenvironments self-activated nanoscale metal-organic frameworks for ferroptosis based cancer chemodynamic/photothermal/chemo therapy</atitle><jtitle>Acta pharmaceutica Sinica. B</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>11</volume><issue>10</issue><spage>3231</spage><epage>3243</epage><pages>3231-3243</pages><issn>2211-3835</issn><eissn>2211-3843</eissn><abstract>Ferroptosis, as a newly discovered cell death form, has become an attractive target for precision cancer therapy. Several ferroptosis therapy strategies based on nanotechnology have been reported by either increasing intracellular iron levels or by inhibition of glutathione (GSH)-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4). However, the strategy by simultaneous iron delivery and GPX4 inhibition has rarely been reported. Herein, novel tumor microenvironments (TME)-activated metal-organic frameworks involving Fe &amp; Cu ions bridged by disulfide bonds with PEGylation (FCSP MOFs) were developed, which would be degraded specifically under the redox TME, simultaneously achieving GSH-depletion induced GPX4 inactivation and releasing Fe ions to produce ROS via Fenton reaction, therefore causing ferroptosis. More ROS could be generated by the acceleration of Fenton reaction due to the released Cu ions and the intrinsic photothermal capability of FCSP MOFs. The overexpressed GSH and H2O2 in TME could ensure the specific TME self-activated therapy. Better tumor therapeutic efficiency could be achieved by doxorubicin (DOX) loading since it can not only cause apoptosis, but also indirectly produce H2O2 to amplify Fenton reaction. Remarkable anti-tumor effect of obtained FCSP@DOX MOFs was verified via both in vitro and in vivo assays. FCSP@DOX achieved excellent anti-tumor efficiency both in vitro and in vivo with minimized damage to normal tissues by taking the synergy of GSH-depletion assistant GPX4 inactivation and Fenton/Fenton-like reaction induced ferroptosis-based chemodynamic/photothermal/chemo therapy. [Display omitted]</abstract><pub>Elsevier B.V</pub><pmid>34729312</pmid><doi>10.1016/j.apsb.2021.01.016</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1095-5719</orcidid><orcidid>https://orcid.org/0000-0001-8027-9512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-3835
ispartof Acta pharmaceutica Sinica. B, 2021-10, Vol.11 (10), p.3231-3243
issn 2211-3835
2211-3843
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_58414b88747d4709bad8472746ec755e
source ScienceDirect Journals; PubMed Central
subjects Drug delivery
Fenton reaction
Ferroptosis
GSH depletion
Metal-organic frameworks (MOFs)
Original
Tumor microenvironments
title Tumor microenvironments self-activated nanoscale metal-organic frameworks for ferroptosis based cancer chemodynamic/photothermal/chemo therapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumor%20microenvironments%20self-activated%20nanoscale%20metal-organic%20frameworks%20for%20ferroptosis%20based%20cancer%20chemodynamic/photothermal/chemo%20therapy&rft.jtitle=Acta%20pharmaceutica%20Sinica.%20B&rft.au=Liang,%20Yu&rft.date=2021-10-01&rft.volume=11&rft.issue=10&rft.spage=3231&rft.epage=3243&rft.pages=3231-3243&rft.issn=2211-3835&rft.eissn=2211-3843&rft_id=info:doi/10.1016/j.apsb.2021.01.016&rft_dat=%3Cproquest_doaj_%3E2593026631%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-cd1e0b8f0d199025b0e3f5dc37c0550bae81ee77194c6e42653e111f8f8e408b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2593026631&rft_id=info:pmid/34729312&rfr_iscdi=true