Loading…
Molecular phenotyping of domestic cat (Felis catus) testicular cells across postnatal development – A model for wild felids
Molecular characterisation of testicular cells is a pivotal step towards a profound understanding of spermatogenesis and developing assisted reproductive techniques (ARTs) based on germline preservation. To enable the identification of testicular somatic and spermatogenic cell types in felids, we in...
Saved in:
Published in: | Theriogenology Wild (Online) 2023, Vol.2, p.100031, Article 100031 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Molecular characterisation of testicular cells is a pivotal step towards a profound understanding of spermatogenesis and developing assisted reproductive techniques (ARTs) based on germline preservation. To enable the identification of testicular somatic and spermatogenic cell types in felids, we investigated the expression of five molecular markers at the protein level in testes from domestic cats (Felis catus) at different developmental phases (prepubertal, pubertal I and II, postpubertal I and II) classified by single-cell ploidy analysis. Our findings indicate a prominent co-labelling for two spermatogonial markers, UCHL1 and FOXO1, throughout postnatal testis development. Smaller subsets of UCHL1 or FOXO1 single-positive spermatogonia were also evident, with the FOXO1 single-positive spermatogonia predominantly observed in prepubertal testes. As expected, DDX4+ germ cells increased in numbers beginning in puberty, reaching a maximum at adulthood (post-pubertal phase), corresponding to the sequential appearance of labelled spermatogonia, spermatocytes and spermatids. Furthermore, we identified SOX9+ Sertoli cells and CYP17A1+ Leydig cells in all of the developmental groups. Importantly, testes of African lion (Panthera leo), Sumatran tiger (Panthera tigris sumatrae), Chinese leopard (Panthera pardus japonesis) and Sudan cheetah (Acinonyx jubatus soemmeringii) exhibited conserved labelling for UCHL1, FOXO1, DDX4, SOX9 and CYP17A1. The present study provides fundamental information about the identity of spermatogenic and somatic testicular cell types across felid development that will be useful for developing ART approaches to support endangered felid conservation.
•Characterisation of Sertoli and Leydig cells of cat testes is possible using SOX9 and CYP17A1 antibodies, respectively.•Cat spermatogonia are positive for UCHL1 and/or FOXO1 molecular markers throughout testis development.•Domestic cats are a valid model for studying spermatogenesis in endangered feline species.•Conserved immunolocalization patterns are shown in testes of four different wild feline species. |
---|---|
ISSN: | 2773-093X 2773-093X |
DOI: | 10.1016/j.therwi.2023.100031 |