Loading…

The in vivo metabolic pathway of Deg-AZM and in vitro investigations into the contribution of drug metabolizing enzymes and drug transporters in the drug interactions of Deg-AZM, a clinical-stage new transgelin agonist

Deglycosylated azithromycin (Deg-AZM), a new transgelin agonist with positive therapeutic effects on slow transit constipation, has been approved for clinical trials in 2024. This work investigated the drug metabolism and transport of Deg-AZM to provide research data for further development of Deg-A...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in pharmacology 2025-01, Vol.15, p.1510903
Main Authors: Gu, Xiaoting, Li, Xiaohe, Tian, Weixue, Zheng, Chaoyue, Cai, Yutian, Xu, Xiang, Zhao, Conglu, Liu, Hongting, Sun, Yao, Luo, Zhilin, Zhu, Shuwen, Zhou, Honggang, Ai, Xiaoyu, Yang, Cheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Deglycosylated azithromycin (Deg-AZM), a new transgelin agonist with positive therapeutic effects on slow transit constipation, has been approved for clinical trials in 2024. This work investigated the drug metabolism and transport of Deg-AZM to provide research data for further development of Deg-AZM. A combination of UPLC-QTOF-MS was used to obtain metabolite spectra of Deg-AZM in plasma, urine, feces and bile. Caco-2 cells was used to investigate the permeability of Deg-AZM and whether it is a potential substrate of the efflux transporter P-glycoprotein. Human liver microsome phenotyping assays with chemical inhibition and recombinant CYPs phenotyping assays were used to investigate the CYP450 enzyme phenotype involved in Deg-AZM metabolism . A HLM inhibition reaction system was established to evaluate the inhibitory effect of Deg-AZM on CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. The mRNA expression of human primary hepatocytes incubated with Deg-AZM or not was evaluate the induction of Deg-AZM on CYP1A2, CYP2B6, and CYP3A4. 44 metabolites of Deg-AZM were identified in rat urine, feces, bile, and plasma, the metabolic pathways included demethylation, monohydroxylation, dihydroxylation, dehydroxidation, hydroreduction, hydrolysis, methylation, glucuronidation and the combination of different metabolic pathways. Deg-AZM was a low permeability drug in the intestine and a potential substrate of the efflux transporter P-glycoprotein. CYP3A4 was the major CYP isoform responsible for Deg-AZM metabolism. Deg-AZM showed moderate inhibition with CYP2B6 and CYP2D6. Data in three batches of human primary hepatocytes disclosed induction potential of Deg-AZM on CYP2B6 and CYP3A4. The metabolic pathway of Deg-AZM and possibility of drug interaction for Deg-AZM with CYP enzymes and drug transporter were fully investigated. It was suggested that dose adjustments may be warranted depending on the potency of the corresponding modulators in clinical.
ISSN:1663-9812
1663-9812
DOI:10.3389/fphar.2024.1510903