Loading…

Discovery of Inhibitors for Proliferating Cell Nuclear Antigen Using a Computational-Based Linked-Multiple-Fragment Screen

Proliferating cell nuclear antigen (PCNA) is a central factor in DNA replication and repair pathways that plays an essential role in genome stability. The functional roles of PCNA are mediated through an extensive list of protein–protein interactions, each of which transmits specific information in...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2019-09, Vol.4 (12), p.15181-15196
Main Authors: Bartolowits, Matthew D, Gast, Jonathon M, Hasler, Ashlee J, Cirrincione, Anthony M, O’Connor, Rachel J, Mahmoud, Amr H, Lill, Markus A, Davisson, Vincent Jo
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Proliferating cell nuclear antigen (PCNA) is a central factor in DNA replication and repair pathways that plays an essential role in genome stability. The functional roles of PCNA are mediated through an extensive list of protein–protein interactions, each of which transmits specific information in protein assemblies. The flexibility at the PCNA–protein interaction interfaces offers opportunities for the discovery of functionally selective inhibitors of DNA repair pathways. Current fragment-based drug design methodologies can be limited by the flexibility of protein interfaces. These factors motivated an approach to defining compounds that could leverage previously identified subpockets on PCNA that are suitable for fragment-binding sites. Methodologies for screening multiple connected fragment-binding events in distinct subpockets are deployed to improve the selection of fragment combinations. A flexible backbone based on N-alkyl-glycine amides offers a scaffold to combinatorically link multiple fragments for in silico screening libraries that explore the diversity of subpockets at protein interfaces. This approach was applied to discover new potential inhibitors of DNA replication and repair that target PCNA in a multiprotein recognition site. The screens of the libraries were designed to computationally filter ligands based upon the fragments and positions to
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.9b02079