Loading…
Reagent Activated Cotton Fiber for Rapid Determination of Aldehydes in Diverse Matrices
A method to capture and analyze aldehydes in either solution or gas samples on cotton fiber, activated with O-benzyl hydroxylamine (OBA), is developed. The stability of the reagent activated cotton fiber (RACF) with and without capturing aldehydes was 17 days and 24 Hrs, respectively, qualifying the...
Saved in:
Published in: | Nature environment and pollution technology 2021-09, Vol.20 (3), p.1059-1068 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A method to capture and analyze aldehydes in either solution or gas samples on cotton fiber, activated with O-benzyl hydroxylamine (OBA), is developed. The stability of the reagent activated cotton fiber (RACF) with and without capturing aldehydes was 17 days and 24 Hrs, respectively, qualifying the technique for field applications. Thus the aldehyde capturing can be done outside the lab using RACF in any closed environment and bring back to the lab for the quantitative analysis.. The analytical method is based on the gas chromatographic analysis of aldoxime formed between aldehydes and OBA on RACF. Optimized experimental conditions required 50 mg of RACF to capture aldehydes with a reaction time of 15 minutes. The technique detects aldehydes much below the permissible exposure limits of 25 ppm for acetaldehyde (CH3CHO) and 0.75 ppm for formaldehyde (HCHO). The method’s detection limits are 4 ppb of HCHO, 8 ppb of CH3CHO in the gas sample, and 1.5 ppb of HCHO, and 19 ppb of CH3CHO in the solution or aqueous sample. The analytical method was validated within the established quantitation ranges as per the required International Council for Harmonization Guidelines (CPMP/ICH/381/95). The RACF is a quick tool to measure aldehydes in a polymer sample, laboratory cupboards or refrigerators, and chemical products. The method described here complies with green analytical chemistry principles such as reduction in a solvent, chemical sample size and waste generation, cost-effectiveness, and usage of a biodegradable substrate. |
---|---|
ISSN: | 0972-6268 2395-3454 |
DOI: | 10.46488/NEPT.2021.v20i03.013 |