Loading…

Ionically Conductive Tunnels in h‐WO3 Enable High‐Rate NH4+ Storage

Compared to the commonly applied metallic ion charge carriers (e.g., Li+ and Na+), batteries using nonmetallic charge carriers (e.g., H+ and NH4+) generally have much faster kinetics and high‐rate capability thanks to the small hydrated ionic sizes and nondiffusion control topochemistry. However, th...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science 2022-04, Vol.9 (10), p.e2105158-n/a
Main Authors: Zhang, Yi‐Zhou, Liang, Jin, Huang, Zihao, Wang, Qian, Zhu, Guoyin, Dong, Shengyang, Liang, Hanfeng, Dong, Xiaochen
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 10
container_start_page e2105158
container_title Advanced science
container_volume 9
creator Zhang, Yi‐Zhou
Liang, Jin
Huang, Zihao
Wang, Qian
Zhu, Guoyin
Dong, Shengyang
Liang, Hanfeng
Dong, Xiaochen
description Compared to the commonly applied metallic ion charge carriers (e.g., Li+ and Na+), batteries using nonmetallic charge carriers (e.g., H+ and NH4+) generally have much faster kinetics and high‐rate capability thanks to the small hydrated ionic sizes and nondiffusion control topochemistry. However, the hosts for nonmetallic charge carriers are still limited. In this work, it is suggested that mixed ionic–electronic conductors can serve as a promising host for NH4+ storage. Using hexagonal tungsten oxide (h‐WO3) as an example, it is shown that the existence of ionic conductive tunnels greatly promotes the high‐rate NH4+ storage. Specifically, a much higher capacity of 82 mAh g–1 at 1 A g–1 is achieved on h‐WO3, in sharp contrast to 14 mAh g–1 of monoclinic tungsten oxide (m‐WO3). In addition, unlike layered materials, the insertion and desertion of NH4+ ions are confined within the tunnels of the h‐WO3, which minimizes the damage to the crystal structure. This leads to outstanding stability of up to 200 000 cycles with 68% capacity retention at a high current of 20 A g–1. Hexagonal tungsten oxide (h‐WO3) with mixed ionically and electronically conductive tunnels can serve as a promising host for high‐rate NH4+ storage. Specifically, a much higher capacity of 82 mAh g–1 at 1 A g–1 is achieved on h‐WO3, in sharp contrast to 14 mAh g–1 of its polymorph monoclinic tungsten oxide (m‐WO3).
doi_str_mv 10.1002/advs.202105158
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_58c4421d9f654aeba232de2b12ebfcbe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_58c4421d9f654aeba232de2b12ebfcbe</doaj_id><sourcerecordid>2624947800</sourcerecordid><originalsourceid>FETCH-LOGICAL-d4225-8c527be10d265cf8846630c695908456c7d42d8bcc7968c0bf598f166466deec3</originalsourceid><addsrcrecordid>eNpdkU1LXDEUhkNpqWLddn2hm0IZzfdNNgUZrTMgFdS2y5CbnDtmyCT2fkyZnT_B39hf0owjUl0lvHl4cjgvQh8JPiIY02Pr1_0RxZRgQYR6g_Yp0WrCFOdv_7vvocO-X2KMiWA1J-o92mOC4JpSsY_O5zkFZ2PcVNOc_OiGsIbqZkwJYl-FVN3-vX_4dcmqs2SbCNUsLLbJlR2g-j7jX6rrIXd2AR_Qu9bGHg6fzgP049vZzXQ2ubg8n09PLiael_8myglaN0Cwp1K4VikuJcNOaqGx4kK6unBeNc7VWiqHm1Zo1RIpC-cBHDtA853XZ7s0d11Y2W5jsg3mMcjdwthuCC6CEcpxTonXrRTcQmMpox5oQyg0rWuguL7uXHdjswLvIA2djS-kL19SuDWLvDZKK6KxLILPT4Iu_x6hH8wq9A5itAny2BsqKde8VhgX9NMrdJnHLpVVFYpLjeua8ULxHfUnRNg8T0Kw2fZttn2b577NyenPayaEYP8AjfWeYg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646907734</pqid></control><display><type>article</type><title>Ionically Conductive Tunnels in h‐WO3 Enable High‐Rate NH4+ Storage</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>PubMed Central</source><creator>Zhang, Yi‐Zhou ; Liang, Jin ; Huang, Zihao ; Wang, Qian ; Zhu, Guoyin ; Dong, Shengyang ; Liang, Hanfeng ; Dong, Xiaochen</creator><creatorcontrib>Zhang, Yi‐Zhou ; Liang, Jin ; Huang, Zihao ; Wang, Qian ; Zhu, Guoyin ; Dong, Shengyang ; Liang, Hanfeng ; Dong, Xiaochen</creatorcontrib><description>Compared to the commonly applied metallic ion charge carriers (e.g., Li+ and Na+), batteries using nonmetallic charge carriers (e.g., H+ and NH4+) generally have much faster kinetics and high‐rate capability thanks to the small hydrated ionic sizes and nondiffusion control topochemistry. However, the hosts for nonmetallic charge carriers are still limited. In this work, it is suggested that mixed ionic–electronic conductors can serve as a promising host for NH4+ storage. Using hexagonal tungsten oxide (h‐WO3) as an example, it is shown that the existence of ionic conductive tunnels greatly promotes the high‐rate NH4+ storage. Specifically, a much higher capacity of 82 mAh g–1 at 1 A g–1 is achieved on h‐WO3, in sharp contrast to 14 mAh g–1 of monoclinic tungsten oxide (m‐WO3). In addition, unlike layered materials, the insertion and desertion of NH4+ ions are confined within the tunnels of the h‐WO3, which minimizes the damage to the crystal structure. This leads to outstanding stability of up to 200 000 cycles with 68% capacity retention at a high current of 20 A g–1. Hexagonal tungsten oxide (h‐WO3) with mixed ionically and electronically conductive tunnels can serve as a promising host for high‐rate NH4+ storage. Specifically, a much higher capacity of 82 mAh g–1 at 1 A g–1 is achieved on h‐WO3, in sharp contrast to 14 mAh g–1 of its polymorph monoclinic tungsten oxide (m‐WO3).</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202105158</identifier><identifier>PMID: 35107225</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Crystal structure ; Electrodes ; Electrolytes ; energy storage ; ionic tunnels ; NH4 ; WO3</subject><ispartof>Advanced science, 2022-04, Vol.9 (10), p.e2105158-n/a</ispartof><rights>2022 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 The Authors. Advanced Science published by Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7327-8060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2646907734/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2646907734?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11542,25732,27903,27904,36991,36992,44569,46030,46454,53769,53771,74872</link.rule.ids></links><search><creatorcontrib>Zhang, Yi‐Zhou</creatorcontrib><creatorcontrib>Liang, Jin</creatorcontrib><creatorcontrib>Huang, Zihao</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Zhu, Guoyin</creatorcontrib><creatorcontrib>Dong, Shengyang</creatorcontrib><creatorcontrib>Liang, Hanfeng</creatorcontrib><creatorcontrib>Dong, Xiaochen</creatorcontrib><title>Ionically Conductive Tunnels in h‐WO3 Enable High‐Rate NH4+ Storage</title><title>Advanced science</title><description>Compared to the commonly applied metallic ion charge carriers (e.g., Li+ and Na+), batteries using nonmetallic charge carriers (e.g., H+ and NH4+) generally have much faster kinetics and high‐rate capability thanks to the small hydrated ionic sizes and nondiffusion control topochemistry. However, the hosts for nonmetallic charge carriers are still limited. In this work, it is suggested that mixed ionic–electronic conductors can serve as a promising host for NH4+ storage. Using hexagonal tungsten oxide (h‐WO3) as an example, it is shown that the existence of ionic conductive tunnels greatly promotes the high‐rate NH4+ storage. Specifically, a much higher capacity of 82 mAh g–1 at 1 A g–1 is achieved on h‐WO3, in sharp contrast to 14 mAh g–1 of monoclinic tungsten oxide (m‐WO3). In addition, unlike layered materials, the insertion and desertion of NH4+ ions are confined within the tunnels of the h‐WO3, which minimizes the damage to the crystal structure. This leads to outstanding stability of up to 200 000 cycles with 68% capacity retention at a high current of 20 A g–1. Hexagonal tungsten oxide (h‐WO3) with mixed ionically and electronically conductive tunnels can serve as a promising host for high‐rate NH4+ storage. Specifically, a much higher capacity of 82 mAh g–1 at 1 A g–1 is achieved on h‐WO3, in sharp contrast to 14 mAh g–1 of its polymorph monoclinic tungsten oxide (m‐WO3).</description><subject>Crystal structure</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>energy storage</subject><subject>ionic tunnels</subject><subject>NH4</subject><subject>WO3</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1LXDEUhkNpqWLddn2hm0IZzfdNNgUZrTMgFdS2y5CbnDtmyCT2fkyZnT_B39hf0owjUl0lvHl4cjgvQh8JPiIY02Pr1_0RxZRgQYR6g_Yp0WrCFOdv_7vvocO-X2KMiWA1J-o92mOC4JpSsY_O5zkFZ2PcVNOc_OiGsIbqZkwJYl-FVN3-vX_4dcmqs2SbCNUsLLbJlR2g-j7jX6rrIXd2AR_Qu9bGHg6fzgP049vZzXQ2ubg8n09PLiael_8myglaN0Cwp1K4VikuJcNOaqGx4kK6unBeNc7VWiqHm1Zo1RIpC-cBHDtA853XZ7s0d11Y2W5jsg3mMcjdwthuCC6CEcpxTonXrRTcQmMpox5oQyg0rWuguL7uXHdjswLvIA2djS-kL19SuDWLvDZKK6KxLILPT4Iu_x6hH8wq9A5itAny2BsqKde8VhgX9NMrdJnHLpVVFYpLjeua8ULxHfUnRNg8T0Kw2fZttn2b577NyenPayaEYP8AjfWeYg</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Zhang, Yi‐Zhou</creator><creator>Liang, Jin</creator><creator>Huang, Zihao</creator><creator>Wang, Qian</creator><creator>Zhu, Guoyin</creator><creator>Dong, Shengyang</creator><creator>Liang, Hanfeng</creator><creator>Dong, Xiaochen</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7327-8060</orcidid></search><sort><creationdate>20220401</creationdate><title>Ionically Conductive Tunnels in h‐WO3 Enable High‐Rate NH4+ Storage</title><author>Zhang, Yi‐Zhou ; Liang, Jin ; Huang, Zihao ; Wang, Qian ; Zhu, Guoyin ; Dong, Shengyang ; Liang, Hanfeng ; Dong, Xiaochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d4225-8c527be10d265cf8846630c695908456c7d42d8bcc7968c0bf598f166466deec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Crystal structure</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>energy storage</topic><topic>ionic tunnels</topic><topic>NH4</topic><topic>WO3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yi‐Zhou</creatorcontrib><creatorcontrib>Liang, Jin</creatorcontrib><creatorcontrib>Huang, Zihao</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Zhu, Guoyin</creatorcontrib><creatorcontrib>Dong, Shengyang</creatorcontrib><creatorcontrib>Liang, Hanfeng</creatorcontrib><creatorcontrib>Dong, Xiaochen</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Journals</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yi‐Zhou</au><au>Liang, Jin</au><au>Huang, Zihao</au><au>Wang, Qian</au><au>Zhu, Guoyin</au><au>Dong, Shengyang</au><au>Liang, Hanfeng</au><au>Dong, Xiaochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionically Conductive Tunnels in h‐WO3 Enable High‐Rate NH4+ Storage</atitle><jtitle>Advanced science</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>9</volume><issue>10</issue><spage>e2105158</spage><epage>n/a</epage><pages>e2105158-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Compared to the commonly applied metallic ion charge carriers (e.g., Li+ and Na+), batteries using nonmetallic charge carriers (e.g., H+ and NH4+) generally have much faster kinetics and high‐rate capability thanks to the small hydrated ionic sizes and nondiffusion control topochemistry. However, the hosts for nonmetallic charge carriers are still limited. In this work, it is suggested that mixed ionic–electronic conductors can serve as a promising host for NH4+ storage. Using hexagonal tungsten oxide (h‐WO3) as an example, it is shown that the existence of ionic conductive tunnels greatly promotes the high‐rate NH4+ storage. Specifically, a much higher capacity of 82 mAh g–1 at 1 A g–1 is achieved on h‐WO3, in sharp contrast to 14 mAh g–1 of monoclinic tungsten oxide (m‐WO3). In addition, unlike layered materials, the insertion and desertion of NH4+ ions are confined within the tunnels of the h‐WO3, which minimizes the damage to the crystal structure. This leads to outstanding stability of up to 200 000 cycles with 68% capacity retention at a high current of 20 A g–1. Hexagonal tungsten oxide (h‐WO3) with mixed ionically and electronically conductive tunnels can serve as a promising host for high‐rate NH4+ storage. Specifically, a much higher capacity of 82 mAh g–1 at 1 A g–1 is achieved on h‐WO3, in sharp contrast to 14 mAh g–1 of its polymorph monoclinic tungsten oxide (m‐WO3).</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35107225</pmid><doi>10.1002/advs.202105158</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7327-8060</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2022-04, Vol.9 (10), p.e2105158-n/a
issn 2198-3844
2198-3844
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_58c4421d9f654aeba232de2b12ebfcbe
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Open Access: Wiley-Blackwell Open Access Journals; PubMed Central
subjects Crystal structure
Electrodes
Electrolytes
energy storage
ionic tunnels
NH4
WO3
title Ionically Conductive Tunnels in h‐WO3 Enable High‐Rate NH4+ Storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionically%20Conductive%20Tunnels%20in%20h%E2%80%90WO3%20Enable%20High%E2%80%90Rate%20NH4+%20Storage&rft.jtitle=Advanced%20science&rft.au=Zhang,%20Yi%E2%80%90Zhou&rft.date=2022-04-01&rft.volume=9&rft.issue=10&rft.spage=e2105158&rft.epage=n/a&rft.pages=e2105158-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202105158&rft_dat=%3Cproquest_doaj_%3E2624947800%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d4225-8c527be10d265cf8846630c695908456c7d42d8bcc7968c0bf598f166466deec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2646907734&rft_id=info:pmid/35107225&rfr_iscdi=true