Loading…

A Mixture of Regular Vines for Multiple Dependencies

To uncover complex hidden dependency structures among variables, researchers have used a mixture of vine copula constructions. To date, these have been limited to a subclass of regular vine models, the so-called drawable vine, fitting only one type of bivariate copula for all variable pairs. However...

Full description

Saved in:
Bibliographic Details
Published in:Journal of probability and statistics 2021-05, Vol.2021, p.1-15
Main Author: Alanazi, Fadhah Amer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To uncover complex hidden dependency structures among variables, researchers have used a mixture of vine copula constructions. To date, these have been limited to a subclass of regular vine models, the so-called drawable vine, fitting only one type of bivariate copula for all variable pairs. However, the variation of complex hidden correlations from one pair of variables to another is more likely to be present in many real datasets. Single-type bivariate copulas are unable to deal with such a problem. In addition, the regular vine copula model is much more capable and flexible than its subclasses. Hence, to fully uncover and describe complex hidden dependency structures among variables and provide even further flexibility to the mixture of regular vine models, a mixture of regular vine models, with a mixed choice of bivariate copulas, is proposed in this paper. The model was applied to simulated and real data to illustrate its performance. The proposed model shows significant performance over the mixture of R-vine densities with a single copula family fitted to all pairs.
ISSN:1687-952X
1687-9538
DOI:10.1155/2021/5559518