Loading…
Investigation of optical and photoelectric properties of poly (ohydroxyamide) sensitized by phthalocyanine as a perspective material for solar cells
Optical and photoelectric properties of poly (ohydroxyamide) (PHA) sensitized with zinc phthalocyanines were investigated in the visible and near infrared spectral regions. The structures were deposited on glass substrates by centrifugation and subsequent drying of a PHA film without thermal anneali...
Saved in:
Published in: | E3S web of conferences 2020-01, Vol.220, p.1019 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Optical and photoelectric properties of poly (ohydroxyamide) (PHA) sensitized with zinc phthalocyanines were investigated in the visible and near infrared spectral regions. The structures were deposited on glass substrates by centrifugation and subsequent drying of a PHA film without thermal annealing. Optical spectra revealed characteristic absorption peaks of phthalocyanine in the longer wavelength region at 620-640 nm and 680-700 nm; absorption of the PHA matrix monotonously increases to the shorter wavelengths starting from 700 nm. Measurements of the photocurrent under irradiation with a high-power LED at a wavelength 630 nm showed photoconductivity related to the organic dye; photoconductivity also was observed while irradiated at 540 nm, presumably due to the absorption of PHA matrix. For non-sensitized (dye-free) PHA films no detectable photocurrents were produced by 630 nm irradiation. It was shown that introducing of phthalocyanines significantly improves optical absorption and photoconductivity of PHA thin films at the wavelengths, where the maximum in the spectral distribution of solar radiation lies. It was concluded that phthalocyanine-sensitized PHA has the potential use as a photosensitive organic material for solar applications, for example in developing composite organicinorganic structures with ferroelectrics. |
---|---|
ISSN: | 2267-1242 2555-0403 2267-1242 |
DOI: | 10.1051/e3sconf/202022001019 |