Loading…
Enabling intercalation‐type TiNb24O62 anode for sodium‐ and potassium‐ion batteries via a synergetic strategy of oxygen vacancy and carbon incorporation
The key to develop earth‐abundant energy storage technologies sodium‐ and potassium‐ion batteries (SIBs and PIBs) is to identify low‐cost electrode materials that allow fast and reversible Na+/K+ intercalation. Here, we report an intercalation‐type material TiNb24O62 as a versatile anode for SIBs an...
Saved in:
Published in: | SusMat (Online) 2023-04, Vol.3 (2), p.222-234 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 234 |
container_issue | 2 |
container_start_page | 222 |
container_title | SusMat (Online) |
container_volume | 3 |
creator | Vijaya Kumar Saroja, Ajay Piriya Wang, Zhipeng Tinker, Henry R. Wang, Feng Ryan Shearing, Paul R. Xu, Yang |
description | The key to develop earth‐abundant energy storage technologies sodium‐ and potassium‐ion batteries (SIBs and PIBs) is to identify low‐cost electrode materials that allow fast and reversible Na+/K+ intercalation. Here, we report an intercalation‐type material TiNb24O62 as a versatile anode for SIBs and PIBs, via a synergistic strategy of oxygen vacancy and carbon incorporation to enhance ion and electron diffusion. The TiNb24O62−x/reduced graphene oxide (rGO) composite anode delivers high reversible capacities (130 mA h g−1 for SIBs and 178 mA h g−1 for PIBs), great rate performance (54 mA h g−1 for SIBs and 37 mA h g−1 for PIBs at 1 A g−1), and superior cycle stability (73.7% after 500 cycles for SIBs and 84% after 300 cycles for PIBs). The performance is among the best results of intercalation‐type metal oxide anodes for SIBs and PIBs. The better performance of TiNb24O62−x/rGO in SIBs than PIBs is due to the better reaction kinetics of the former. Moreover, mechanistic study confirms that the redox activity of Nb4+/5+ is responsible for the reversible intercalation of Na+/K+. Our results suggest that TiNb24O62−x/rGO is a promising anode for SIBs and PIBs and may stimulate further research on intercalation‐type compounds as candidate anodes for large ion batteries.
This work represents a synergistic strategy of oxygen vacancy and carbon incorporation to enable the Na+/K+ intercalation in titanium niobium oxide anode and improve the intercalation reaction kinetics. The results highlight the promise of utilizing metal oxides as intercalation anodes for earth‐abundant energy storage technologies. |
doi_str_mv | 10.1002/sus2.113 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_58f0e74af92f427289024fdd7450d606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_58f0e74af92f427289024fdd7450d606</doaj_id><sourcerecordid>3092381806</sourcerecordid><originalsourceid>FETCH-LOGICAL-d2513-5b5c6782dd6f3eead5bf98b4abdddbd228084d29fbdbe3ca97dc84bb32e9dbc63</originalsourceid><addsrcrecordid>eNpNkUFu1TAQhiMEElWpxBEssU5xbCdxlqgqUKmii7Zra-yxIz-ldrD9CtlxBE7A4TgJfu8hxGpGv_75ZkZ_07zt6GVHKXuf95lddh1_0ZyxYWKt6Hv28r_-dXOR845Wa9_xbhBnza_rAHrxYSY-FJsMLFB8DL9__CzbasmD_6KZuBsYgRDREhcTyRH9_qk6qoZkjQVyPgl1kGgoleNtJs8eCJC8BZtmW7whuSQodt5IdCR-32YbyDMYCGY7kgwkXQE-mJjWmI53vGleOViyvfhbz5vHj9cPV5_b27tPN1cfbls8fNL2ujfDKBni4Li1gL12k9QCNCJqZExSKZBNTqO23MA0opFCa87shNoM_Ly5OXExwk6tyT9B2lQEr45CTLOCVH9YrOqlo3YU4CbmBBuZnCgTDnEUPcWBHljvTqw1xa97m4vaxX0K9XzF6cS47OTR1Z5c3_xit38rO6oOSapDkqomqe4f71mt_A_73JlC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092381806</pqid></control><display><type>article</type><title>Enabling intercalation‐type TiNb24O62 anode for sodium‐ and potassium‐ion batteries via a synergetic strategy of oxygen vacancy and carbon incorporation</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Vijaya Kumar Saroja, Ajay Piriya ; Wang, Zhipeng ; Tinker, Henry R. ; Wang, Feng Ryan ; Shearing, Paul R. ; Xu, Yang</creator><creatorcontrib>Vijaya Kumar Saroja, Ajay Piriya ; Wang, Zhipeng ; Tinker, Henry R. ; Wang, Feng Ryan ; Shearing, Paul R. ; Xu, Yang</creatorcontrib><description>The key to develop earth‐abundant energy storage technologies sodium‐ and potassium‐ion batteries (SIBs and PIBs) is to identify low‐cost electrode materials that allow fast and reversible Na+/K+ intercalation. Here, we report an intercalation‐type material TiNb24O62 as a versatile anode for SIBs and PIBs, via a synergistic strategy of oxygen vacancy and carbon incorporation to enhance ion and electron diffusion. The TiNb24O62−x/reduced graphene oxide (rGO) composite anode delivers high reversible capacities (130 mA h g−1 for SIBs and 178 mA h g−1 for PIBs), great rate performance (54 mA h g−1 for SIBs and 37 mA h g−1 for PIBs at 1 A g−1), and superior cycle stability (73.7% after 500 cycles for SIBs and 84% after 300 cycles for PIBs). The performance is among the best results of intercalation‐type metal oxide anodes for SIBs and PIBs. The better performance of TiNb24O62−x/rGO in SIBs than PIBs is due to the better reaction kinetics of the former. Moreover, mechanistic study confirms that the redox activity of Nb4+/5+ is responsible for the reversible intercalation of Na+/K+. Our results suggest that TiNb24O62−x/rGO is a promising anode for SIBs and PIBs and may stimulate further research on intercalation‐type compounds as candidate anodes for large ion batteries.
This work represents a synergistic strategy of oxygen vacancy and carbon incorporation to enable the Na+/K+ intercalation in titanium niobium oxide anode and improve the intercalation reaction kinetics. The results highlight the promise of utilizing metal oxides as intercalation anodes for earth‐abundant energy storage technologies.</description><identifier>ISSN: 2692-4552</identifier><identifier>ISSN: 2766-8479</identifier><identifier>EISSN: 2692-4552</identifier><identifier>DOI: 10.1002/sus2.113</identifier><language>eng</language><publisher>Chengdu: John Wiley & Sons, Inc</publisher><subject>anode ; Anodes ; Carbon ; Crystal structure ; defects ; Diffusion rate ; Electrode materials ; Electron diffusion ; Energy storage ; Graphene ; Intercalation ; Metal oxides ; Oxidation ; Oxygen ; Potassium ; potassium‐ion battery ; Reaction kinetics ; Sodium ; sodium‐ion battery ; sustainability ; Titanium</subject><ispartof>SusMat (Online), 2023-04, Vol.3 (2), p.222-234</ispartof><rights>2023 The Authors. published by Sichuan University and John Wiley & Sons Australia, Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0177-6348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsus2.113$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3092381806?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,25753,27924,27925,37012,44590,46052,46476</link.rule.ids></links><search><creatorcontrib>Vijaya Kumar Saroja, Ajay Piriya</creatorcontrib><creatorcontrib>Wang, Zhipeng</creatorcontrib><creatorcontrib>Tinker, Henry R.</creatorcontrib><creatorcontrib>Wang, Feng Ryan</creatorcontrib><creatorcontrib>Shearing, Paul R.</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><title>Enabling intercalation‐type TiNb24O62 anode for sodium‐ and potassium‐ion batteries via a synergetic strategy of oxygen vacancy and carbon incorporation</title><title>SusMat (Online)</title><description>The key to develop earth‐abundant energy storage technologies sodium‐ and potassium‐ion batteries (SIBs and PIBs) is to identify low‐cost electrode materials that allow fast and reversible Na+/K+ intercalation. Here, we report an intercalation‐type material TiNb24O62 as a versatile anode for SIBs and PIBs, via a synergistic strategy of oxygen vacancy and carbon incorporation to enhance ion and electron diffusion. The TiNb24O62−x/reduced graphene oxide (rGO) composite anode delivers high reversible capacities (130 mA h g−1 for SIBs and 178 mA h g−1 for PIBs), great rate performance (54 mA h g−1 for SIBs and 37 mA h g−1 for PIBs at 1 A g−1), and superior cycle stability (73.7% after 500 cycles for SIBs and 84% after 300 cycles for PIBs). The performance is among the best results of intercalation‐type metal oxide anodes for SIBs and PIBs. The better performance of TiNb24O62−x/rGO in SIBs than PIBs is due to the better reaction kinetics of the former. Moreover, mechanistic study confirms that the redox activity of Nb4+/5+ is responsible for the reversible intercalation of Na+/K+. Our results suggest that TiNb24O62−x/rGO is a promising anode for SIBs and PIBs and may stimulate further research on intercalation‐type compounds as candidate anodes for large ion batteries.
This work represents a synergistic strategy of oxygen vacancy and carbon incorporation to enable the Na+/K+ intercalation in titanium niobium oxide anode and improve the intercalation reaction kinetics. The results highlight the promise of utilizing metal oxides as intercalation anodes for earth‐abundant energy storage technologies.</description><subject>anode</subject><subject>Anodes</subject><subject>Carbon</subject><subject>Crystal structure</subject><subject>defects</subject><subject>Diffusion rate</subject><subject>Electrode materials</subject><subject>Electron diffusion</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Intercalation</subject><subject>Metal oxides</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Potassium</subject><subject>potassium‐ion battery</subject><subject>Reaction kinetics</subject><subject>Sodium</subject><subject>sodium‐ion battery</subject><subject>sustainability</subject><subject>Titanium</subject><issn>2692-4552</issn><issn>2766-8479</issn><issn>2692-4552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFu1TAQhiMEElWpxBEssU5xbCdxlqgqUKmii7Zra-yxIz-ldrD9CtlxBE7A4TgJfu8hxGpGv_75ZkZ_07zt6GVHKXuf95lddh1_0ZyxYWKt6Hv28r_-dXOR845Wa9_xbhBnza_rAHrxYSY-FJsMLFB8DL9__CzbasmD_6KZuBsYgRDREhcTyRH9_qk6qoZkjQVyPgl1kGgoleNtJs8eCJC8BZtmW7whuSQodt5IdCR-32YbyDMYCGY7kgwkXQE-mJjWmI53vGleOViyvfhbz5vHj9cPV5_b27tPN1cfbls8fNL2ujfDKBni4Li1gL12k9QCNCJqZExSKZBNTqO23MA0opFCa87shNoM_Ly5OXExwk6tyT9B2lQEr45CTLOCVH9YrOqlo3YU4CbmBBuZnCgTDnEUPcWBHljvTqw1xa97m4vaxX0K9XzF6cS47OTR1Z5c3_xit38rO6oOSapDkqomqe4f71mt_A_73JlC</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Vijaya Kumar Saroja, Ajay Piriya</creator><creator>Wang, Zhipeng</creator><creator>Tinker, Henry R.</creator><creator>Wang, Feng Ryan</creator><creator>Shearing, Paul R.</creator><creator>Xu, Yang</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0177-6348</orcidid></search><sort><creationdate>202304</creationdate><title>Enabling intercalation‐type TiNb24O62 anode for sodium‐ and potassium‐ion batteries via a synergetic strategy of oxygen vacancy and carbon incorporation</title><author>Vijaya Kumar Saroja, Ajay Piriya ; Wang, Zhipeng ; Tinker, Henry R. ; Wang, Feng Ryan ; Shearing, Paul R. ; Xu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d2513-5b5c6782dd6f3eead5bf98b4abdddbd228084d29fbdbe3ca97dc84bb32e9dbc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>anode</topic><topic>Anodes</topic><topic>Carbon</topic><topic>Crystal structure</topic><topic>defects</topic><topic>Diffusion rate</topic><topic>Electrode materials</topic><topic>Electron diffusion</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Intercalation</topic><topic>Metal oxides</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Potassium</topic><topic>potassium‐ion battery</topic><topic>Reaction kinetics</topic><topic>Sodium</topic><topic>sodium‐ion battery</topic><topic>sustainability</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vijaya Kumar Saroja, Ajay Piriya</creatorcontrib><creatorcontrib>Wang, Zhipeng</creatorcontrib><creatorcontrib>Tinker, Henry R.</creatorcontrib><creatorcontrib>Wang, Feng Ryan</creatorcontrib><creatorcontrib>Shearing, Paul R.</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>SusMat (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vijaya Kumar Saroja, Ajay Piriya</au><au>Wang, Zhipeng</au><au>Tinker, Henry R.</au><au>Wang, Feng Ryan</au><au>Shearing, Paul R.</au><au>Xu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling intercalation‐type TiNb24O62 anode for sodium‐ and potassium‐ion batteries via a synergetic strategy of oxygen vacancy and carbon incorporation</atitle><jtitle>SusMat (Online)</jtitle><date>2023-04</date><risdate>2023</risdate><volume>3</volume><issue>2</issue><spage>222</spage><epage>234</epage><pages>222-234</pages><issn>2692-4552</issn><issn>2766-8479</issn><eissn>2692-4552</eissn><abstract>The key to develop earth‐abundant energy storage technologies sodium‐ and potassium‐ion batteries (SIBs and PIBs) is to identify low‐cost electrode materials that allow fast and reversible Na+/K+ intercalation. Here, we report an intercalation‐type material TiNb24O62 as a versatile anode for SIBs and PIBs, via a synergistic strategy of oxygen vacancy and carbon incorporation to enhance ion and electron diffusion. The TiNb24O62−x/reduced graphene oxide (rGO) composite anode delivers high reversible capacities (130 mA h g−1 for SIBs and 178 mA h g−1 for PIBs), great rate performance (54 mA h g−1 for SIBs and 37 mA h g−1 for PIBs at 1 A g−1), and superior cycle stability (73.7% after 500 cycles for SIBs and 84% after 300 cycles for PIBs). The performance is among the best results of intercalation‐type metal oxide anodes for SIBs and PIBs. The better performance of TiNb24O62−x/rGO in SIBs than PIBs is due to the better reaction kinetics of the former. Moreover, mechanistic study confirms that the redox activity of Nb4+/5+ is responsible for the reversible intercalation of Na+/K+. Our results suggest that TiNb24O62−x/rGO is a promising anode for SIBs and PIBs and may stimulate further research on intercalation‐type compounds as candidate anodes for large ion batteries.
This work represents a synergistic strategy of oxygen vacancy and carbon incorporation to enable the Na+/K+ intercalation in titanium niobium oxide anode and improve the intercalation reaction kinetics. The results highlight the promise of utilizing metal oxides as intercalation anodes for earth‐abundant energy storage technologies.</abstract><cop>Chengdu</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/sus2.113</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0177-6348</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2692-4552 |
ispartof | SusMat (Online), 2023-04, Vol.3 (2), p.222-234 |
issn | 2692-4552 2766-8479 2692-4552 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_58f0e74af92f427289024fdd7450d606 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | anode Anodes Carbon Crystal structure defects Diffusion rate Electrode materials Electron diffusion Energy storage Graphene Intercalation Metal oxides Oxidation Oxygen Potassium potassium‐ion battery Reaction kinetics Sodium sodium‐ion battery sustainability Titanium |
title | Enabling intercalation‐type TiNb24O62 anode for sodium‐ and potassium‐ion batteries via a synergetic strategy of oxygen vacancy and carbon incorporation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20intercalation%E2%80%90type%20TiNb24O62%20anode%20for%20sodium%E2%80%90%20and%20potassium%E2%80%90ion%20batteries%20via%20a%20synergetic%20strategy%20of%20oxygen%20vacancy%20and%20carbon%20incorporation&rft.jtitle=SusMat%20(Online)&rft.au=Vijaya%20Kumar%20Saroja,%20Ajay%20Piriya&rft.date=2023-04&rft.volume=3&rft.issue=2&rft.spage=222&rft.epage=234&rft.pages=222-234&rft.issn=2692-4552&rft.eissn=2692-4552&rft_id=info:doi/10.1002/sus2.113&rft_dat=%3Cproquest_doaj_%3E3092381806%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d2513-5b5c6782dd6f3eead5bf98b4abdddbd228084d29fbdbe3ca97dc84bb32e9dbc63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3092381806&rft_id=info:pmid/&rfr_iscdi=true |