Loading…

Anyons in Integer Quantum Hall Magnets

Strongly correlated fractional quantum Hall liquids support fractional excitations, which can be understood in terms of adiabatic flux insertion arguments. A second route to fractionalization is through the coupling of weakly interacting electrons to topologically nontrivial backgrounds such as in p...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. X 2013-08, Vol.3 (3), p.031008, Article 031008
Main Authors: Rahmani, Armin, Muniz, Rodrigo A., Martin, Ivar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-f0ef3ef742130347eac52ef95448c9513395dd81a2ef497a5368d8b20a7186af3
cites cdi_FETCH-LOGICAL-c409t-f0ef3ef742130347eac52ef95448c9513395dd81a2ef497a5368d8b20a7186af3
container_end_page
container_issue 3
container_start_page 031008
container_title Physical review. X
container_volume 3
creator Rahmani, Armin
Muniz, Rodrigo A.
Martin, Ivar
description Strongly correlated fractional quantum Hall liquids support fractional excitations, which can be understood in terms of adiabatic flux insertion arguments. A second route to fractionalization is through the coupling of weakly interacting electrons to topologically nontrivial backgrounds such as in polyacetylene. Here, we demonstrate that electronic fractionalization combining features of both these mechanisms occurs in noncoplanar itinerant magnetic systems, where integer quantum Hall physics arises from the coupling of electrons to the magnetic background. The topologically stable magnetic vortices in such systems carry fractional (in general, irrational) electronic quantum numbers and exhibit Abelian anyonic statistics. We analyze the properties of these topological defects by mapping the distortions of the magnetic texture onto effective non-Abelian vector potentials. We support our analytical results with extensive numerical calculations.
doi_str_mv 10.1103/PhysRevX.3.031008
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_58f1590fa2c243ba87ad6e9976f25e51</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_58f1590fa2c243ba87ad6e9976f25e51</doaj_id><sourcerecordid>2550548111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-f0ef3ef742130347eac52ef95448c9513395dd81a2ef497a5368d8b20a7186af3</originalsourceid><addsrcrecordid>eNpNkFtLw0AQhRdRsNT-AN8Cgm-ps7fs7mMpagsVLyj4tkyT3ZqSJrqbCP33pkbFeZnhcDhn-Ag5pzClFPjVw9s-PrnP1ymfAqcA-oiMGM0g5Rz08b_7lExi3EI_GVCh1Ihczup9U8ekrJNl3bqNC8ljh3Xb7ZIFVlVyh5vatfGMnHisopv87DF5ubl-ni_S1f3tcj5bpbkA06YenOfOK8EoBy6Uw1wy540UQudGUs6NLApNsReFUSh5pgu9ZoCK6gw9H5PlkFs0uLXvodxh2NsGS_stNGFjMbRlXjkrtafSgEeWM8HXqBUWmTNGZZ5J13eNycWQ9R6aj87F1m6bLtT9-5ZJCVJoSg8uOrjy0MQYnP9rpWAPdO0vXcvtQJd_ARHDa6Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550548111</pqid></control><display><type>article</type><title>Anyons in Integer Quantum Hall Magnets</title><source>Publicly Available Content Database</source><creator>Rahmani, Armin ; Muniz, Rodrigo A. ; Martin, Ivar</creator><creatorcontrib>Rahmani, Armin ; Muniz, Rodrigo A. ; Martin, Ivar</creatorcontrib><description>Strongly correlated fractional quantum Hall liquids support fractional excitations, which can be understood in terms of adiabatic flux insertion arguments. A second route to fractionalization is through the coupling of weakly interacting electrons to topologically nontrivial backgrounds such as in polyacetylene. Here, we demonstrate that electronic fractionalization combining features of both these mechanisms occurs in noncoplanar itinerant magnetic systems, where integer quantum Hall physics arises from the coupling of electrons to the magnetic background. The topologically stable magnetic vortices in such systems carry fractional (in general, irrational) electronic quantum numbers and exhibit Abelian anyonic statistics. We analyze the properties of these topological defects by mapping the distortions of the magnetic texture onto effective non-Abelian vector potentials. We support our analytical results with extensive numerical calculations.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.3.031008</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Bosons ; Collection ; Coupling ; Electromagnetism ; Electrons ; Elementary excitations ; Excitation ; Fermions ; Heterostructures ; Integers ; Magnets ; Polyacetylene ; Quantum Hall effect ; Quantum numbers ; Texture ; Vector potentials</subject><ispartof>Physical review. X, 2013-08, Vol.3 (3), p.031008, Article 031008</ispartof><rights>2013. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-f0ef3ef742130347eac52ef95448c9513395dd81a2ef497a5368d8b20a7186af3</citedby><cites>FETCH-LOGICAL-c409t-f0ef3ef742130347eac52ef95448c9513395dd81a2ef497a5368d8b20a7186af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2550548111?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Rahmani, Armin</creatorcontrib><creatorcontrib>Muniz, Rodrigo A.</creatorcontrib><creatorcontrib>Martin, Ivar</creatorcontrib><title>Anyons in Integer Quantum Hall Magnets</title><title>Physical review. X</title><description>Strongly correlated fractional quantum Hall liquids support fractional excitations, which can be understood in terms of adiabatic flux insertion arguments. A second route to fractionalization is through the coupling of weakly interacting electrons to topologically nontrivial backgrounds such as in polyacetylene. Here, we demonstrate that electronic fractionalization combining features of both these mechanisms occurs in noncoplanar itinerant magnetic systems, where integer quantum Hall physics arises from the coupling of electrons to the magnetic background. The topologically stable magnetic vortices in such systems carry fractional (in general, irrational) electronic quantum numbers and exhibit Abelian anyonic statistics. We analyze the properties of these topological defects by mapping the distortions of the magnetic texture onto effective non-Abelian vector potentials. We support our analytical results with extensive numerical calculations.</description><subject>Bosons</subject><subject>Collection</subject><subject>Coupling</subject><subject>Electromagnetism</subject><subject>Electrons</subject><subject>Elementary excitations</subject><subject>Excitation</subject><subject>Fermions</subject><subject>Heterostructures</subject><subject>Integers</subject><subject>Magnets</subject><subject>Polyacetylene</subject><subject>Quantum Hall effect</subject><subject>Quantum numbers</subject><subject>Texture</subject><subject>Vector potentials</subject><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkFtLw0AQhRdRsNT-AN8Cgm-ps7fs7mMpagsVLyj4tkyT3ZqSJrqbCP33pkbFeZnhcDhn-Ag5pzClFPjVw9s-PrnP1ymfAqcA-oiMGM0g5Rz08b_7lExi3EI_GVCh1Ihczup9U8ekrJNl3bqNC8ljh3Xb7ZIFVlVyh5vatfGMnHisopv87DF5ubl-ni_S1f3tcj5bpbkA06YenOfOK8EoBy6Uw1wy540UQudGUs6NLApNsReFUSh5pgu9ZoCK6gw9H5PlkFs0uLXvodxh2NsGS_stNGFjMbRlXjkrtafSgEeWM8HXqBUWmTNGZZ5J13eNycWQ9R6aj87F1m6bLtT9-5ZJCVJoSg8uOrjy0MQYnP9rpWAPdO0vXcvtQJd_ARHDa6Q</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Rahmani, Armin</creator><creator>Muniz, Rodrigo A.</creator><creator>Martin, Ivar</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20130801</creationdate><title>Anyons in Integer Quantum Hall Magnets</title><author>Rahmani, Armin ; Muniz, Rodrigo A. ; Martin, Ivar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-f0ef3ef742130347eac52ef95448c9513395dd81a2ef497a5368d8b20a7186af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bosons</topic><topic>Collection</topic><topic>Coupling</topic><topic>Electromagnetism</topic><topic>Electrons</topic><topic>Elementary excitations</topic><topic>Excitation</topic><topic>Fermions</topic><topic>Heterostructures</topic><topic>Integers</topic><topic>Magnets</topic><topic>Polyacetylene</topic><topic>Quantum Hall effect</topic><topic>Quantum numbers</topic><topic>Texture</topic><topic>Vector potentials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahmani, Armin</creatorcontrib><creatorcontrib>Muniz, Rodrigo A.</creatorcontrib><creatorcontrib>Martin, Ivar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahmani, Armin</au><au>Muniz, Rodrigo A.</au><au>Martin, Ivar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anyons in Integer Quantum Hall Magnets</atitle><jtitle>Physical review. X</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>3</volume><issue>3</issue><spage>031008</spage><pages>031008-</pages><artnum>031008</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>Strongly correlated fractional quantum Hall liquids support fractional excitations, which can be understood in terms of adiabatic flux insertion arguments. A second route to fractionalization is through the coupling of weakly interacting electrons to topologically nontrivial backgrounds such as in polyacetylene. Here, we demonstrate that electronic fractionalization combining features of both these mechanisms occurs in noncoplanar itinerant magnetic systems, where integer quantum Hall physics arises from the coupling of electrons to the magnetic background. The topologically stable magnetic vortices in such systems carry fractional (in general, irrational) electronic quantum numbers and exhibit Abelian anyonic statistics. We analyze the properties of these topological defects by mapping the distortions of the magnetic texture onto effective non-Abelian vector potentials. We support our analytical results with extensive numerical calculations.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.3.031008</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2160-3308
ispartof Physical review. X, 2013-08, Vol.3 (3), p.031008, Article 031008
issn 2160-3308
2160-3308
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_58f1590fa2c243ba87ad6e9976f25e51
source Publicly Available Content Database
subjects Bosons
Collection
Coupling
Electromagnetism
Electrons
Elementary excitations
Excitation
Fermions
Heterostructures
Integers
Magnets
Polyacetylene
Quantum Hall effect
Quantum numbers
Texture
Vector potentials
title Anyons in Integer Quantum Hall Magnets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anyons%20in%20Integer%20Quantum%20Hall%20Magnets&rft.jtitle=Physical%20review.%20X&rft.au=Rahmani,%20Armin&rft.date=2013-08-01&rft.volume=3&rft.issue=3&rft.spage=031008&rft.pages=031008-&rft.artnum=031008&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.3.031008&rft_dat=%3Cproquest_doaj_%3E2550548111%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-f0ef3ef742130347eac52ef95448c9513395dd81a2ef497a5368d8b20a7186af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550548111&rft_id=info:pmid/&rfr_iscdi=true