Loading…
Anyons in Integer Quantum Hall Magnets
Strongly correlated fractional quantum Hall liquids support fractional excitations, which can be understood in terms of adiabatic flux insertion arguments. A second route to fractionalization is through the coupling of weakly interacting electrons to topologically nontrivial backgrounds such as in p...
Saved in:
Published in: | Physical review. X 2013-08, Vol.3 (3), p.031008, Article 031008 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-f0ef3ef742130347eac52ef95448c9513395dd81a2ef497a5368d8b20a7186af3 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-f0ef3ef742130347eac52ef95448c9513395dd81a2ef497a5368d8b20a7186af3 |
container_end_page | |
container_issue | 3 |
container_start_page | 031008 |
container_title | Physical review. X |
container_volume | 3 |
creator | Rahmani, Armin Muniz, Rodrigo A. Martin, Ivar |
description | Strongly correlated fractional quantum Hall liquids support fractional excitations, which can be understood in terms of adiabatic flux insertion arguments. A second route to fractionalization is through the coupling of weakly interacting electrons to topologically nontrivial backgrounds such as in polyacetylene. Here, we demonstrate that electronic fractionalization combining features of both these mechanisms occurs in noncoplanar itinerant magnetic systems, where integer quantum Hall physics arises from the coupling of electrons to the magnetic background. The topologically stable magnetic vortices in such systems carry fractional (in general, irrational) electronic quantum numbers and exhibit Abelian anyonic statistics. We analyze the properties of these topological defects by mapping the distortions of the magnetic texture onto effective non-Abelian vector potentials. We support our analytical results with extensive numerical calculations. |
doi_str_mv | 10.1103/PhysRevX.3.031008 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_58f1590fa2c243ba87ad6e9976f25e51</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_58f1590fa2c243ba87ad6e9976f25e51</doaj_id><sourcerecordid>2550548111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-f0ef3ef742130347eac52ef95448c9513395dd81a2ef497a5368d8b20a7186af3</originalsourceid><addsrcrecordid>eNpNkFtLw0AQhRdRsNT-AN8Cgm-ps7fs7mMpagsVLyj4tkyT3ZqSJrqbCP33pkbFeZnhcDhn-Ag5pzClFPjVw9s-PrnP1ymfAqcA-oiMGM0g5Rz08b_7lExi3EI_GVCh1Ihczup9U8ekrJNl3bqNC8ljh3Xb7ZIFVlVyh5vatfGMnHisopv87DF5ubl-ni_S1f3tcj5bpbkA06YenOfOK8EoBy6Uw1wy540UQudGUs6NLApNsReFUSh5pgu9ZoCK6gw9H5PlkFs0uLXvodxh2NsGS_stNGFjMbRlXjkrtafSgEeWM8HXqBUWmTNGZZ5J13eNycWQ9R6aj87F1m6bLtT9-5ZJCVJoSg8uOrjy0MQYnP9rpWAPdO0vXcvtQJd_ARHDa6Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550548111</pqid></control><display><type>article</type><title>Anyons in Integer Quantum Hall Magnets</title><source>Publicly Available Content Database</source><creator>Rahmani, Armin ; Muniz, Rodrigo A. ; Martin, Ivar</creator><creatorcontrib>Rahmani, Armin ; Muniz, Rodrigo A. ; Martin, Ivar</creatorcontrib><description>Strongly correlated fractional quantum Hall liquids support fractional excitations, which can be understood in terms of adiabatic flux insertion arguments. A second route to fractionalization is through the coupling of weakly interacting electrons to topologically nontrivial backgrounds such as in polyacetylene. Here, we demonstrate that electronic fractionalization combining features of both these mechanisms occurs in noncoplanar itinerant magnetic systems, where integer quantum Hall physics arises from the coupling of electrons to the magnetic background. The topologically stable magnetic vortices in such systems carry fractional (in general, irrational) electronic quantum numbers and exhibit Abelian anyonic statistics. We analyze the properties of these topological defects by mapping the distortions of the magnetic texture onto effective non-Abelian vector potentials. We support our analytical results with extensive numerical calculations.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.3.031008</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Bosons ; Collection ; Coupling ; Electromagnetism ; Electrons ; Elementary excitations ; Excitation ; Fermions ; Heterostructures ; Integers ; Magnets ; Polyacetylene ; Quantum Hall effect ; Quantum numbers ; Texture ; Vector potentials</subject><ispartof>Physical review. X, 2013-08, Vol.3 (3), p.031008, Article 031008</ispartof><rights>2013. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-f0ef3ef742130347eac52ef95448c9513395dd81a2ef497a5368d8b20a7186af3</citedby><cites>FETCH-LOGICAL-c409t-f0ef3ef742130347eac52ef95448c9513395dd81a2ef497a5368d8b20a7186af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2550548111?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Rahmani, Armin</creatorcontrib><creatorcontrib>Muniz, Rodrigo A.</creatorcontrib><creatorcontrib>Martin, Ivar</creatorcontrib><title>Anyons in Integer Quantum Hall Magnets</title><title>Physical review. X</title><description>Strongly correlated fractional quantum Hall liquids support fractional excitations, which can be understood in terms of adiabatic flux insertion arguments. A second route to fractionalization is through the coupling of weakly interacting electrons to topologically nontrivial backgrounds such as in polyacetylene. Here, we demonstrate that electronic fractionalization combining features of both these mechanisms occurs in noncoplanar itinerant magnetic systems, where integer quantum Hall physics arises from the coupling of electrons to the magnetic background. The topologically stable magnetic vortices in such systems carry fractional (in general, irrational) electronic quantum numbers and exhibit Abelian anyonic statistics. We analyze the properties of these topological defects by mapping the distortions of the magnetic texture onto effective non-Abelian vector potentials. We support our analytical results with extensive numerical calculations.</description><subject>Bosons</subject><subject>Collection</subject><subject>Coupling</subject><subject>Electromagnetism</subject><subject>Electrons</subject><subject>Elementary excitations</subject><subject>Excitation</subject><subject>Fermions</subject><subject>Heterostructures</subject><subject>Integers</subject><subject>Magnets</subject><subject>Polyacetylene</subject><subject>Quantum Hall effect</subject><subject>Quantum numbers</subject><subject>Texture</subject><subject>Vector potentials</subject><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkFtLw0AQhRdRsNT-AN8Cgm-ps7fs7mMpagsVLyj4tkyT3ZqSJrqbCP33pkbFeZnhcDhn-Ag5pzClFPjVw9s-PrnP1ymfAqcA-oiMGM0g5Rz08b_7lExi3EI_GVCh1Ihczup9U8ekrJNl3bqNC8ljh3Xb7ZIFVlVyh5vatfGMnHisopv87DF5ubl-ni_S1f3tcj5bpbkA06YenOfOK8EoBy6Uw1wy540UQudGUs6NLApNsReFUSh5pgu9ZoCK6gw9H5PlkFs0uLXvodxh2NsGS_stNGFjMbRlXjkrtafSgEeWM8HXqBUWmTNGZZ5J13eNycWQ9R6aj87F1m6bLtT9-5ZJCVJoSg8uOrjy0MQYnP9rpWAPdO0vXcvtQJd_ARHDa6Q</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Rahmani, Armin</creator><creator>Muniz, Rodrigo A.</creator><creator>Martin, Ivar</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20130801</creationdate><title>Anyons in Integer Quantum Hall Magnets</title><author>Rahmani, Armin ; Muniz, Rodrigo A. ; Martin, Ivar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-f0ef3ef742130347eac52ef95448c9513395dd81a2ef497a5368d8b20a7186af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bosons</topic><topic>Collection</topic><topic>Coupling</topic><topic>Electromagnetism</topic><topic>Electrons</topic><topic>Elementary excitations</topic><topic>Excitation</topic><topic>Fermions</topic><topic>Heterostructures</topic><topic>Integers</topic><topic>Magnets</topic><topic>Polyacetylene</topic><topic>Quantum Hall effect</topic><topic>Quantum numbers</topic><topic>Texture</topic><topic>Vector potentials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahmani, Armin</creatorcontrib><creatorcontrib>Muniz, Rodrigo A.</creatorcontrib><creatorcontrib>Martin, Ivar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahmani, Armin</au><au>Muniz, Rodrigo A.</au><au>Martin, Ivar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anyons in Integer Quantum Hall Magnets</atitle><jtitle>Physical review. X</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>3</volume><issue>3</issue><spage>031008</spage><pages>031008-</pages><artnum>031008</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>Strongly correlated fractional quantum Hall liquids support fractional excitations, which can be understood in terms of adiabatic flux insertion arguments. A second route to fractionalization is through the coupling of weakly interacting electrons to topologically nontrivial backgrounds such as in polyacetylene. Here, we demonstrate that electronic fractionalization combining features of both these mechanisms occurs in noncoplanar itinerant magnetic systems, where integer quantum Hall physics arises from the coupling of electrons to the magnetic background. The topologically stable magnetic vortices in such systems carry fractional (in general, irrational) electronic quantum numbers and exhibit Abelian anyonic statistics. We analyze the properties of these topological defects by mapping the distortions of the magnetic texture onto effective non-Abelian vector potentials. We support our analytical results with extensive numerical calculations.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.3.031008</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2160-3308 |
ispartof | Physical review. X, 2013-08, Vol.3 (3), p.031008, Article 031008 |
issn | 2160-3308 2160-3308 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_58f1590fa2c243ba87ad6e9976f25e51 |
source | Publicly Available Content Database |
subjects | Bosons Collection Coupling Electromagnetism Electrons Elementary excitations Excitation Fermions Heterostructures Integers Magnets Polyacetylene Quantum Hall effect Quantum numbers Texture Vector potentials |
title | Anyons in Integer Quantum Hall Magnets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anyons%20in%20Integer%20Quantum%20Hall%20Magnets&rft.jtitle=Physical%20review.%20X&rft.au=Rahmani,%20Armin&rft.date=2013-08-01&rft.volume=3&rft.issue=3&rft.spage=031008&rft.pages=031008-&rft.artnum=031008&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.3.031008&rft_dat=%3Cproquest_doaj_%3E2550548111%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-f0ef3ef742130347eac52ef95448c9513395dd81a2ef497a5368d8b20a7186af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550548111&rft_id=info:pmid/&rfr_iscdi=true |