Loading…
Identification of a Prognostic Model Based on 2-Gene Signature and Analysis of Corresponding Tumor Microenvironment in Alcohol-Related Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors with the poor prognosis. Nowadays, alcohol is becoming a leading risk factor of HCC in many countries. In our study, we obtained the DEGs in alcohol-related HCC through two databases (TCGA and GEO). Subsequently, we perform...
Saved in:
Published in: | Frontiers in oncology 2021-09, Vol.11, p.719355-719355 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c439t-254b8901a778a6c00e861a57112f127a187be5a51c9548287e4aadf8cfea5f1d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c439t-254b8901a778a6c00e861a57112f127a187be5a51c9548287e4aadf8cfea5f1d3 |
container_end_page | 719355 |
container_issue | |
container_start_page | 719355 |
container_title | Frontiers in oncology |
container_volume | 11 |
creator | Guo, Yong Hu, Jiejun Zhao, Zhibo Zhong, Guochao Gong, Jianping Cai, Dong |
description | Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors with the poor prognosis. Nowadays, alcohol is becoming a leading risk factor of HCC in many countries. In our study, we obtained the DEGs in alcohol-related HCC through two databases (TCGA and GEO). Subsequently, we performed enrichment analyses (GO and KEGG), constructed the PPI network and screened the 53 hub genes by Cytoscape. Two genes (BUB1B and CENPF) from hub genes was screened by LASSO and Cox regression analyses to construct the prognostic model. Then, we found that the high risk group had the worse prognosis and verified the clinical value of the risk score in alcohol-related HCC. Finally, we analyzed the tumor microenvironment between high and low risk groups through CIBERSORT and ESTIMATE. In summary, we constructed the two-gene prognostic model that could predict the poor prognosis in patients with alcohol-related HCC. |
doi_str_mv | 10.3389/fonc.2021.719355 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_58f8527571984206b98b6391f2ff62a1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_58f8527571984206b98b6391f2ff62a1</doaj_id><sourcerecordid>2582110255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-254b8901a778a6c00e861a57112f127a187be5a51c9548287e4aadf8cfea5f1d3</originalsourceid><addsrcrecordid>eNpVkk1v1DAQhiMEolXpnaOPXLL4I06cC9KygnalVq2gSNysWcfeunI8i51U6q_hr-KwFaJzmZFn5hn51VtV7xldCaH6jw6jWXHK2apjvZDyVXXKuWjqvhE_X_9Xn1TnOT_QEq2kjIq31Ylo2qbt2v60-r0dbJy88wYmj5GgI0BuE-4j5skbco2DDeQzZDuQ0ub1hY2WfPf7CNOcLIE4kHWE8JR9XpY3mJLNB4yDj3tyN4-YyLU3CW189AnjWK4RH8k6GLzHUH-zAabCvrQHmNDYEOYAiWwgGR9xhHfVGwch2_PnfFb9-PrlbnNZX91cbDfrq9o0op9qLpud6imDrlPQGkqtahnIjjHuGO-AqW5nJUhmetkorjrbAAxOGWdBOjaIs2p75A4ID_qQ_AjpSSN4_fcB015DKoIEq6VySvKuwHvVcNruerVrRc8cd67lwArr05F1mHejHUz5coLwAvqyE_293uOjVpIKKZoC-PAMSPhrtnnSo8-LNhAtzllzqThjlEtZRulxtEicc7Lu3xlG9WITvdhELzbRR5uIP73ZshE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582110255</pqid></control><display><type>article</type><title>Identification of a Prognostic Model Based on 2-Gene Signature and Analysis of Corresponding Tumor Microenvironment in Alcohol-Related Hepatocellular Carcinoma</title><source>PubMed Central</source><creator>Guo, Yong ; Hu, Jiejun ; Zhao, Zhibo ; Zhong, Guochao ; Gong, Jianping ; Cai, Dong</creator><creatorcontrib>Guo, Yong ; Hu, Jiejun ; Zhao, Zhibo ; Zhong, Guochao ; Gong, Jianping ; Cai, Dong</creatorcontrib><description>Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors with the poor prognosis. Nowadays, alcohol is becoming a leading risk factor of HCC in many countries. In our study, we obtained the DEGs in alcohol-related HCC through two databases (TCGA and GEO). Subsequently, we performed enrichment analyses (GO and KEGG), constructed the PPI network and screened the 53 hub genes by Cytoscape. Two genes (BUB1B and CENPF) from hub genes was screened by LASSO and Cox regression analyses to construct the prognostic model. Then, we found that the high risk group had the worse prognosis and verified the clinical value of the risk score in alcohol-related HCC. Finally, we analyzed the tumor microenvironment between high and low risk groups through CIBERSORT and ESTIMATE. In summary, we constructed the two-gene prognostic model that could predict the poor prognosis in patients with alcohol-related HCC.</description><identifier>ISSN: 2234-943X</identifier><identifier>EISSN: 2234-943X</identifier><identifier>DOI: 10.3389/fonc.2021.719355</identifier><identifier>PMID: 34646769</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>alcohol-related HCC ; bioinformatics analysis ; immune cells ; Oncology ; prognostic model ; tumor microenvironment</subject><ispartof>Frontiers in oncology, 2021-09, Vol.11, p.719355-719355</ispartof><rights>Copyright © 2021 Guo, Hu, Zhao, Zhong, Gong and Cai 2021 Guo, Hu, Zhao, Zhong, Gong and Cai</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-254b8901a778a6c00e861a57112f127a187be5a51c9548287e4aadf8cfea5f1d3</citedby><cites>FETCH-LOGICAL-c439t-254b8901a778a6c00e861a57112f127a187be5a51c9548287e4aadf8cfea5f1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8503534/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8503534/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids></links><search><creatorcontrib>Guo, Yong</creatorcontrib><creatorcontrib>Hu, Jiejun</creatorcontrib><creatorcontrib>Zhao, Zhibo</creatorcontrib><creatorcontrib>Zhong, Guochao</creatorcontrib><creatorcontrib>Gong, Jianping</creatorcontrib><creatorcontrib>Cai, Dong</creatorcontrib><title>Identification of a Prognostic Model Based on 2-Gene Signature and Analysis of Corresponding Tumor Microenvironment in Alcohol-Related Hepatocellular Carcinoma</title><title>Frontiers in oncology</title><description>Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors with the poor prognosis. Nowadays, alcohol is becoming a leading risk factor of HCC in many countries. In our study, we obtained the DEGs in alcohol-related HCC through two databases (TCGA and GEO). Subsequently, we performed enrichment analyses (GO and KEGG), constructed the PPI network and screened the 53 hub genes by Cytoscape. Two genes (BUB1B and CENPF) from hub genes was screened by LASSO and Cox regression analyses to construct the prognostic model. Then, we found that the high risk group had the worse prognosis and verified the clinical value of the risk score in alcohol-related HCC. Finally, we analyzed the tumor microenvironment between high and low risk groups through CIBERSORT and ESTIMATE. In summary, we constructed the two-gene prognostic model that could predict the poor prognosis in patients with alcohol-related HCC.</description><subject>alcohol-related HCC</subject><subject>bioinformatics analysis</subject><subject>immune cells</subject><subject>Oncology</subject><subject>prognostic model</subject><subject>tumor microenvironment</subject><issn>2234-943X</issn><issn>2234-943X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkk1v1DAQhiMEolXpnaOPXLL4I06cC9KygnalVq2gSNysWcfeunI8i51U6q_hr-KwFaJzmZFn5hn51VtV7xldCaH6jw6jWXHK2apjvZDyVXXKuWjqvhE_X_9Xn1TnOT_QEq2kjIq31Ylo2qbt2v60-r0dbJy88wYmj5GgI0BuE-4j5skbco2DDeQzZDuQ0ub1hY2WfPf7CNOcLIE4kHWE8JR9XpY3mJLNB4yDj3tyN4-YyLU3CW189AnjWK4RH8k6GLzHUH-zAabCvrQHmNDYEOYAiWwgGR9xhHfVGwch2_PnfFb9-PrlbnNZX91cbDfrq9o0op9qLpud6imDrlPQGkqtahnIjjHuGO-AqW5nJUhmetkorjrbAAxOGWdBOjaIs2p75A4ID_qQ_AjpSSN4_fcB015DKoIEq6VySvKuwHvVcNruerVrRc8cd67lwArr05F1mHejHUz5coLwAvqyE_293uOjVpIKKZoC-PAMSPhrtnnSo8-LNhAtzllzqThjlEtZRulxtEicc7Lu3xlG9WITvdhELzbRR5uIP73ZshE</recordid><startdate>20210927</startdate><enddate>20210927</enddate><creator>Guo, Yong</creator><creator>Hu, Jiejun</creator><creator>Zhao, Zhibo</creator><creator>Zhong, Guochao</creator><creator>Gong, Jianping</creator><creator>Cai, Dong</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210927</creationdate><title>Identification of a Prognostic Model Based on 2-Gene Signature and Analysis of Corresponding Tumor Microenvironment in Alcohol-Related Hepatocellular Carcinoma</title><author>Guo, Yong ; Hu, Jiejun ; Zhao, Zhibo ; Zhong, Guochao ; Gong, Jianping ; Cai, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-254b8901a778a6c00e861a57112f127a187be5a51c9548287e4aadf8cfea5f1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>alcohol-related HCC</topic><topic>bioinformatics analysis</topic><topic>immune cells</topic><topic>Oncology</topic><topic>prognostic model</topic><topic>tumor microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yong</creatorcontrib><creatorcontrib>Hu, Jiejun</creatorcontrib><creatorcontrib>Zhao, Zhibo</creatorcontrib><creatorcontrib>Zhong, Guochao</creatorcontrib><creatorcontrib>Gong, Jianping</creatorcontrib><creatorcontrib>Cai, Dong</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yong</au><au>Hu, Jiejun</au><au>Zhao, Zhibo</au><au>Zhong, Guochao</au><au>Gong, Jianping</au><au>Cai, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a Prognostic Model Based on 2-Gene Signature and Analysis of Corresponding Tumor Microenvironment in Alcohol-Related Hepatocellular Carcinoma</atitle><jtitle>Frontiers in oncology</jtitle><date>2021-09-27</date><risdate>2021</risdate><volume>11</volume><spage>719355</spage><epage>719355</epage><pages>719355-719355</pages><issn>2234-943X</issn><eissn>2234-943X</eissn><abstract>Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors with the poor prognosis. Nowadays, alcohol is becoming a leading risk factor of HCC in many countries. In our study, we obtained the DEGs in alcohol-related HCC through two databases (TCGA and GEO). Subsequently, we performed enrichment analyses (GO and KEGG), constructed the PPI network and screened the 53 hub genes by Cytoscape. Two genes (BUB1B and CENPF) from hub genes was screened by LASSO and Cox regression analyses to construct the prognostic model. Then, we found that the high risk group had the worse prognosis and verified the clinical value of the risk score in alcohol-related HCC. Finally, we analyzed the tumor microenvironment between high and low risk groups through CIBERSORT and ESTIMATE. In summary, we constructed the two-gene prognostic model that could predict the poor prognosis in patients with alcohol-related HCC.</abstract><pub>Frontiers Media S.A</pub><pmid>34646769</pmid><doi>10.3389/fonc.2021.719355</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2234-943X |
ispartof | Frontiers in oncology, 2021-09, Vol.11, p.719355-719355 |
issn | 2234-943X 2234-943X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_58f8527571984206b98b6391f2ff62a1 |
source | PubMed Central |
subjects | alcohol-related HCC bioinformatics analysis immune cells Oncology prognostic model tumor microenvironment |
title | Identification of a Prognostic Model Based on 2-Gene Signature and Analysis of Corresponding Tumor Microenvironment in Alcohol-Related Hepatocellular Carcinoma |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20Prognostic%20Model%20Based%20on%202-Gene%20Signature%20and%20Analysis%20of%20Corresponding%20Tumor%20Microenvironment%20in%20Alcohol-Related%20Hepatocellular%20Carcinoma&rft.jtitle=Frontiers%20in%20oncology&rft.au=Guo,%20Yong&rft.date=2021-09-27&rft.volume=11&rft.spage=719355&rft.epage=719355&rft.pages=719355-719355&rft.issn=2234-943X&rft.eissn=2234-943X&rft_id=info:doi/10.3389/fonc.2021.719355&rft_dat=%3Cproquest_doaj_%3E2582110255%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-254b8901a778a6c00e861a57112f127a187be5a51c9548287e4aadf8cfea5f1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582110255&rft_id=info:pmid/34646769&rfr_iscdi=true |