Loading…

Identification of a Prognostic Model Based on 2-Gene Signature and Analysis of Corresponding Tumor Microenvironment in Alcohol-Related Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors with the poor prognosis. Nowadays, alcohol is becoming a leading risk factor of HCC in many countries. In our study, we obtained the DEGs in alcohol-related HCC through two databases (TCGA and GEO). Subsequently, we perform...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in oncology 2021-09, Vol.11, p.719355-719355
Main Authors: Guo, Yong, Hu, Jiejun, Zhao, Zhibo, Zhong, Guochao, Gong, Jianping, Cai, Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c439t-254b8901a778a6c00e861a57112f127a187be5a51c9548287e4aadf8cfea5f1d3
cites cdi_FETCH-LOGICAL-c439t-254b8901a778a6c00e861a57112f127a187be5a51c9548287e4aadf8cfea5f1d3
container_end_page 719355
container_issue
container_start_page 719355
container_title Frontiers in oncology
container_volume 11
creator Guo, Yong
Hu, Jiejun
Zhao, Zhibo
Zhong, Guochao
Gong, Jianping
Cai, Dong
description Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors with the poor prognosis. Nowadays, alcohol is becoming a leading risk factor of HCC in many countries. In our study, we obtained the DEGs in alcohol-related HCC through two databases (TCGA and GEO). Subsequently, we performed enrichment analyses (GO and KEGG), constructed the PPI network and screened the 53 hub genes by Cytoscape. Two genes (BUB1B and CENPF) from hub genes was screened by LASSO and Cox regression analyses to construct the prognostic model. Then, we found that the high risk group had the worse prognosis and verified the clinical value of the risk score in alcohol-related HCC. Finally, we analyzed the tumor microenvironment between high and low risk groups through CIBERSORT and ESTIMATE. In summary, we constructed the two-gene prognostic model that could predict the poor prognosis in patients with alcohol-related HCC.
doi_str_mv 10.3389/fonc.2021.719355
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_58f8527571984206b98b6391f2ff62a1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_58f8527571984206b98b6391f2ff62a1</doaj_id><sourcerecordid>2582110255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-254b8901a778a6c00e861a57112f127a187be5a51c9548287e4aadf8cfea5f1d3</originalsourceid><addsrcrecordid>eNpVkk1v1DAQhiMEolXpnaOPXLL4I06cC9KygnalVq2gSNysWcfeunI8i51U6q_hr-KwFaJzmZFn5hn51VtV7xldCaH6jw6jWXHK2apjvZDyVXXKuWjqvhE_X_9Xn1TnOT_QEq2kjIq31Ylo2qbt2v60-r0dbJy88wYmj5GgI0BuE-4j5skbco2DDeQzZDuQ0ub1hY2WfPf7CNOcLIE4kHWE8JR9XpY3mJLNB4yDj3tyN4-YyLU3CW189AnjWK4RH8k6GLzHUH-zAabCvrQHmNDYEOYAiWwgGR9xhHfVGwch2_PnfFb9-PrlbnNZX91cbDfrq9o0op9qLpud6imDrlPQGkqtahnIjjHuGO-AqW5nJUhmetkorjrbAAxOGWdBOjaIs2p75A4ID_qQ_AjpSSN4_fcB015DKoIEq6VySvKuwHvVcNruerVrRc8cd67lwArr05F1mHejHUz5coLwAvqyE_293uOjVpIKKZoC-PAMSPhrtnnSo8-LNhAtzllzqThjlEtZRulxtEicc7Lu3xlG9WITvdhELzbRR5uIP73ZshE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582110255</pqid></control><display><type>article</type><title>Identification of a Prognostic Model Based on 2-Gene Signature and Analysis of Corresponding Tumor Microenvironment in Alcohol-Related Hepatocellular Carcinoma</title><source>PubMed Central</source><creator>Guo, Yong ; Hu, Jiejun ; Zhao, Zhibo ; Zhong, Guochao ; Gong, Jianping ; Cai, Dong</creator><creatorcontrib>Guo, Yong ; Hu, Jiejun ; Zhao, Zhibo ; Zhong, Guochao ; Gong, Jianping ; Cai, Dong</creatorcontrib><description>Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors with the poor prognosis. Nowadays, alcohol is becoming a leading risk factor of HCC in many countries. In our study, we obtained the DEGs in alcohol-related HCC through two databases (TCGA and GEO). Subsequently, we performed enrichment analyses (GO and KEGG), constructed the PPI network and screened the 53 hub genes by Cytoscape. Two genes (BUB1B and CENPF) from hub genes was screened by LASSO and Cox regression analyses to construct the prognostic model. Then, we found that the high risk group had the worse prognosis and verified the clinical value of the risk score in alcohol-related HCC. Finally, we analyzed the tumor microenvironment between high and low risk groups through CIBERSORT and ESTIMATE. In summary, we constructed the two-gene prognostic model that could predict the poor prognosis in patients with alcohol-related HCC.</description><identifier>ISSN: 2234-943X</identifier><identifier>EISSN: 2234-943X</identifier><identifier>DOI: 10.3389/fonc.2021.719355</identifier><identifier>PMID: 34646769</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>alcohol-related HCC ; bioinformatics analysis ; immune cells ; Oncology ; prognostic model ; tumor microenvironment</subject><ispartof>Frontiers in oncology, 2021-09, Vol.11, p.719355-719355</ispartof><rights>Copyright © 2021 Guo, Hu, Zhao, Zhong, Gong and Cai 2021 Guo, Hu, Zhao, Zhong, Gong and Cai</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-254b8901a778a6c00e861a57112f127a187be5a51c9548287e4aadf8cfea5f1d3</citedby><cites>FETCH-LOGICAL-c439t-254b8901a778a6c00e861a57112f127a187be5a51c9548287e4aadf8cfea5f1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8503534/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8503534/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids></links><search><creatorcontrib>Guo, Yong</creatorcontrib><creatorcontrib>Hu, Jiejun</creatorcontrib><creatorcontrib>Zhao, Zhibo</creatorcontrib><creatorcontrib>Zhong, Guochao</creatorcontrib><creatorcontrib>Gong, Jianping</creatorcontrib><creatorcontrib>Cai, Dong</creatorcontrib><title>Identification of a Prognostic Model Based on 2-Gene Signature and Analysis of Corresponding Tumor Microenvironment in Alcohol-Related Hepatocellular Carcinoma</title><title>Frontiers in oncology</title><description>Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors with the poor prognosis. Nowadays, alcohol is becoming a leading risk factor of HCC in many countries. In our study, we obtained the DEGs in alcohol-related HCC through two databases (TCGA and GEO). Subsequently, we performed enrichment analyses (GO and KEGG), constructed the PPI network and screened the 53 hub genes by Cytoscape. Two genes (BUB1B and CENPF) from hub genes was screened by LASSO and Cox regression analyses to construct the prognostic model. Then, we found that the high risk group had the worse prognosis and verified the clinical value of the risk score in alcohol-related HCC. Finally, we analyzed the tumor microenvironment between high and low risk groups through CIBERSORT and ESTIMATE. In summary, we constructed the two-gene prognostic model that could predict the poor prognosis in patients with alcohol-related HCC.</description><subject>alcohol-related HCC</subject><subject>bioinformatics analysis</subject><subject>immune cells</subject><subject>Oncology</subject><subject>prognostic model</subject><subject>tumor microenvironment</subject><issn>2234-943X</issn><issn>2234-943X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkk1v1DAQhiMEolXpnaOPXLL4I06cC9KygnalVq2gSNysWcfeunI8i51U6q_hr-KwFaJzmZFn5hn51VtV7xldCaH6jw6jWXHK2apjvZDyVXXKuWjqvhE_X_9Xn1TnOT_QEq2kjIq31Ylo2qbt2v60-r0dbJy88wYmj5GgI0BuE-4j5skbco2DDeQzZDuQ0ub1hY2WfPf7CNOcLIE4kHWE8JR9XpY3mJLNB4yDj3tyN4-YyLU3CW189AnjWK4RH8k6GLzHUH-zAabCvrQHmNDYEOYAiWwgGR9xhHfVGwch2_PnfFb9-PrlbnNZX91cbDfrq9o0op9qLpud6imDrlPQGkqtahnIjjHuGO-AqW5nJUhmetkorjrbAAxOGWdBOjaIs2p75A4ID_qQ_AjpSSN4_fcB015DKoIEq6VySvKuwHvVcNruerVrRc8cd67lwArr05F1mHejHUz5coLwAvqyE_293uOjVpIKKZoC-PAMSPhrtnnSo8-LNhAtzllzqThjlEtZRulxtEicc7Lu3xlG9WITvdhELzbRR5uIP73ZshE</recordid><startdate>20210927</startdate><enddate>20210927</enddate><creator>Guo, Yong</creator><creator>Hu, Jiejun</creator><creator>Zhao, Zhibo</creator><creator>Zhong, Guochao</creator><creator>Gong, Jianping</creator><creator>Cai, Dong</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210927</creationdate><title>Identification of a Prognostic Model Based on 2-Gene Signature and Analysis of Corresponding Tumor Microenvironment in Alcohol-Related Hepatocellular Carcinoma</title><author>Guo, Yong ; Hu, Jiejun ; Zhao, Zhibo ; Zhong, Guochao ; Gong, Jianping ; Cai, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-254b8901a778a6c00e861a57112f127a187be5a51c9548287e4aadf8cfea5f1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>alcohol-related HCC</topic><topic>bioinformatics analysis</topic><topic>immune cells</topic><topic>Oncology</topic><topic>prognostic model</topic><topic>tumor microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yong</creatorcontrib><creatorcontrib>Hu, Jiejun</creatorcontrib><creatorcontrib>Zhao, Zhibo</creatorcontrib><creatorcontrib>Zhong, Guochao</creatorcontrib><creatorcontrib>Gong, Jianping</creatorcontrib><creatorcontrib>Cai, Dong</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yong</au><au>Hu, Jiejun</au><au>Zhao, Zhibo</au><au>Zhong, Guochao</au><au>Gong, Jianping</au><au>Cai, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a Prognostic Model Based on 2-Gene Signature and Analysis of Corresponding Tumor Microenvironment in Alcohol-Related Hepatocellular Carcinoma</atitle><jtitle>Frontiers in oncology</jtitle><date>2021-09-27</date><risdate>2021</risdate><volume>11</volume><spage>719355</spage><epage>719355</epage><pages>719355-719355</pages><issn>2234-943X</issn><eissn>2234-943X</eissn><abstract>Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors with the poor prognosis. Nowadays, alcohol is becoming a leading risk factor of HCC in many countries. In our study, we obtained the DEGs in alcohol-related HCC through two databases (TCGA and GEO). Subsequently, we performed enrichment analyses (GO and KEGG), constructed the PPI network and screened the 53 hub genes by Cytoscape. Two genes (BUB1B and CENPF) from hub genes was screened by LASSO and Cox regression analyses to construct the prognostic model. Then, we found that the high risk group had the worse prognosis and verified the clinical value of the risk score in alcohol-related HCC. Finally, we analyzed the tumor microenvironment between high and low risk groups through CIBERSORT and ESTIMATE. In summary, we constructed the two-gene prognostic model that could predict the poor prognosis in patients with alcohol-related HCC.</abstract><pub>Frontiers Media S.A</pub><pmid>34646769</pmid><doi>10.3389/fonc.2021.719355</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2234-943X
ispartof Frontiers in oncology, 2021-09, Vol.11, p.719355-719355
issn 2234-943X
2234-943X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_58f8527571984206b98b6391f2ff62a1
source PubMed Central
subjects alcohol-related HCC
bioinformatics analysis
immune cells
Oncology
prognostic model
tumor microenvironment
title Identification of a Prognostic Model Based on 2-Gene Signature and Analysis of Corresponding Tumor Microenvironment in Alcohol-Related Hepatocellular Carcinoma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20Prognostic%20Model%20Based%20on%202-Gene%20Signature%20and%20Analysis%20of%20Corresponding%20Tumor%20Microenvironment%20in%20Alcohol-Related%20Hepatocellular%20Carcinoma&rft.jtitle=Frontiers%20in%20oncology&rft.au=Guo,%20Yong&rft.date=2021-09-27&rft.volume=11&rft.spage=719355&rft.epage=719355&rft.pages=719355-719355&rft.issn=2234-943X&rft.eissn=2234-943X&rft_id=info:doi/10.3389/fonc.2021.719355&rft_dat=%3Cproquest_doaj_%3E2582110255%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-254b8901a778a6c00e861a57112f127a187be5a51c9548287e4aadf8cfea5f1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582110255&rft_id=info:pmid/34646769&rfr_iscdi=true