Loading…
Pre-concentration potential evaluation for a silicate zinc ore by density and sensor-based sorting methods
Abstract Pre-concentration consists of the preliminary discarding of a fraction of the mineral processing plant feed which contains little or none of the mineral of interest, reducing the mass to be processed in downstream operations (e.g. milling, concentration and dewatering), as well as the capit...
Saved in:
Published in: | REM - International Engineering Journal 2019-06, Vol.72 (2), p.335-343 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Pre-concentration consists of the preliminary discarding of a fraction of the mineral processing plant feed which contains little or none of the mineral of interest, reducing the mass to be processed in downstream operations (e.g. milling, concentration and dewatering), as well as the capital and operational costs. In this context, this study investigates the performance of density and sensor-based sorting separation methods in the removal of carbonate gangue of a zinc ore, in size fractions typical of crusher products, using sink and float tests with heavy liquids, jig stratification and laboratory scale ore sorting tests using an X-Ray Transmission (XRT) sensor. The best results were obtained through sink and float in heavy liquids, which indicated the possibility of discarding 30% of the feed mass, removing over 60% of the carbonates (CaO and MgO) and losing only 2% of the zinc. The ore sorting tests also presented positive results, with approximately 93% of metallurgical recovery in 70% of the mass for both size fractions tested. The jig stratification results were worse, since the zinc content discarded with this method was high. The results indicate significant reduction potential for Capex and Opex costs using pre-concentration strategy. |
---|---|
ISSN: | 2448-167X 2448-167X |
DOI: | 10.1590/0370-44672018720155 |