Loading…
Diagnosis of Acute Aortic Syndromes on Non-Contrast CT Images with Radiomics-Based Machine Learning
We aimed to detect acute aortic syndromes (AAS) on non-contrast computed tomography (NCCT) images using a radiomics-based machine learning model. A total of 325 patients who underwent aortic CT angiography (CTA) were enrolled retrospectively from 2 medical centers in China to form the internal cohor...
Saved in:
Published in: | Biology (Basel, Switzerland) Switzerland), 2023-02, Vol.12 (3), p.337 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c555t-bcca122166b6405146060fe15e6dc0f14b9ad4893aedf7b0de6725b6ab2256993 |
---|---|
cites | cdi_FETCH-LOGICAL-c555t-bcca122166b6405146060fe15e6dc0f14b9ad4893aedf7b0de6725b6ab2256993 |
container_end_page | |
container_issue | 3 |
container_start_page | 337 |
container_title | Biology (Basel, Switzerland) |
container_volume | 12 |
creator | Ma, Zhuangxuan Jin, Liang Zhang, Lukai Yang, Yuling Tang, Yilin Gao, Pan Sun, Yingli Li, Ming |
description | We aimed to detect acute aortic syndromes (AAS) on non-contrast computed tomography (NCCT) images using a radiomics-based machine learning model. A total of 325 patients who underwent aortic CT angiography (CTA) were enrolled retrospectively from 2 medical centers in China to form the internal cohort (230 patients, 60 patients with AAS) and the external testing cohort (95 patients with AAS). The internal cohort was divided into the training cohort (
= 135), validation cohort (
= 49), and internal testing cohort (
= 46). The aortic mask was manually delineated on NCCT by a radiologist. Least Absolute Shrinkage and Selection Operator regression (LASSO) was used to filter out nine feature parameters; the Support Vector Machine (SVM) model showed the best performance. In the training and validation cohorts, the SVM model had an area under the curve (AUC) of 0.993 (95% CI, 0.965-1); accuracy (ACC), 0.946 (95% CI, 0.877-1); sensitivity, 0.9 (95% CI, 0.696-1); and specificity, 0.964 (95% CI, 0.903-1). In the internal testing cohort, the SVM model had an AUC of 0.997 (95% CI, 0.992-1); ACC, 0.957 (95% CI, 0.945-0.988); sensitivity, 0.889 (95% CI, 0.888-0.889); and specificity, 0.973 (95% CI, 0.959-1). In the external testing cohort, the ACC was 0.991 (95% CI, 0.937-1). This model can detect AAS on NCCT, reducing misdiagnosis and improving examinations and prognosis. |
doi_str_mv | 10.3390/biology12030337 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5940a4d2b944459fbd322d15ba28d4c2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751913437</galeid><doaj_id>oai_doaj_org_article_5940a4d2b944459fbd322d15ba28d4c2</doaj_id><sourcerecordid>A751913437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-bcca122166b6405146060fe15e6dc0f14b9ad4893aedf7b0de6725b6ab2256993</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEolXpmRuKxIVLWn97fULLQmGlBSQoZ8tfyXqV2MVOQPvv67CldCvsg62Zdx7rHU9VvYTgAmMBLrWPfez2EAEMMOZPqlMEuGg4x_zpg_tJdZ7zDpTFAWKYPa9OMBNcACROK_Peqy7E7HMd23ppptHVy5hGb-rv-2BTHFzJhPpLDM0qhjGpPNar63o9qK5kfvtxW39T1sfBm9y8U9nZ-rMyWx9cvXEqBR-6F9WzVvXZnd-dZ9WPqw_Xq0_N5uvH9Wq5aQyldGy0MQoiBBnTjAAKCQMMtA5Sx6wBLSRaKEsWAitnW66BdYwjqpnSCFEmBD6r1geujWonb5IfVNrLqLz8E4ipk2p21jtJBQGKWKQFIYSKVluMkIVUK7SwxKDCentg3Ux6cNa42Xp_BD3OBL-VXfwlIQCEYjYT3twRUvw5uTzKwWfj-l4FF6csEReIAizIokhfP5Lu4pRC6dWsgnTBKMf_VJ0qDnxoY3nYzFC55BQKiAnmRXXxH1XZ1pUvisG1vsSPCi4PBSbFnJNr701CIOc5k4_mrFS8etibe_3fqcK3Fk3NGw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791586573</pqid></control><display><type>article</type><title>Diagnosis of Acute Aortic Syndromes on Non-Contrast CT Images with Radiomics-Based Machine Learning</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Ma, Zhuangxuan ; Jin, Liang ; Zhang, Lukai ; Yang, Yuling ; Tang, Yilin ; Gao, Pan ; Sun, Yingli ; Li, Ming</creator><creatorcontrib>Ma, Zhuangxuan ; Jin, Liang ; Zhang, Lukai ; Yang, Yuling ; Tang, Yilin ; Gao, Pan ; Sun, Yingli ; Li, Ming</creatorcontrib><description>We aimed to detect acute aortic syndromes (AAS) on non-contrast computed tomography (NCCT) images using a radiomics-based machine learning model. A total of 325 patients who underwent aortic CT angiography (CTA) were enrolled retrospectively from 2 medical centers in China to form the internal cohort (230 patients, 60 patients with AAS) and the external testing cohort (95 patients with AAS). The internal cohort was divided into the training cohort (
= 135), validation cohort (
= 49), and internal testing cohort (
= 46). The aortic mask was manually delineated on NCCT by a radiologist. Least Absolute Shrinkage and Selection Operator regression (LASSO) was used to filter out nine feature parameters; the Support Vector Machine (SVM) model showed the best performance. In the training and validation cohorts, the SVM model had an area under the curve (AUC) of 0.993 (95% CI, 0.965-1); accuracy (ACC), 0.946 (95% CI, 0.877-1); sensitivity, 0.9 (95% CI, 0.696-1); and specificity, 0.964 (95% CI, 0.903-1). In the internal testing cohort, the SVM model had an AUC of 0.997 (95% CI, 0.992-1); ACC, 0.957 (95% CI, 0.945-0.988); sensitivity, 0.889 (95% CI, 0.888-0.889); and specificity, 0.973 (95% CI, 0.959-1). In the external testing cohort, the ACC was 0.991 (95% CI, 0.937-1). This model can detect AAS on NCCT, reducing misdiagnosis and improving examinations and prognosis.</description><identifier>ISSN: 2079-7737</identifier><identifier>EISSN: 2079-7737</identifier><identifier>DOI: 10.3390/biology12030337</identifier><identifier>PMID: 36979029</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>acute aortic syndromes ; Algorithms ; Anabolic steroids ; Angiography ; Aorta ; Collaboration ; Comparative analysis ; Computed tomography ; Coronary vessels ; CT imaging ; Diagnosis ; Discriminant analysis ; Emergency medical care ; Hematoma ; Hospitals ; Learning algorithms ; Machine learning ; Medical centers ; Medical imaging ; Medical imaging equipment ; non-contrast CT ; Patients ; Radiomics ; Tomography</subject><ispartof>Biology (Basel, Switzerland), 2023-02, Vol.12 (3), p.337</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-bcca122166b6405146060fe15e6dc0f14b9ad4893aedf7b0de6725b6ab2256993</citedby><cites>FETCH-LOGICAL-c555t-bcca122166b6405146060fe15e6dc0f14b9ad4893aedf7b0de6725b6ab2256993</cites><orcidid>0000-0003-3296-2952 ; 0000-0002-7552-7849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791586573?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791586573?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25740,27911,27912,36999,37000,38503,43882,44577,53778,53780,74167,74881</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36979029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Zhuangxuan</creatorcontrib><creatorcontrib>Jin, Liang</creatorcontrib><creatorcontrib>Zhang, Lukai</creatorcontrib><creatorcontrib>Yang, Yuling</creatorcontrib><creatorcontrib>Tang, Yilin</creatorcontrib><creatorcontrib>Gao, Pan</creatorcontrib><creatorcontrib>Sun, Yingli</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><title>Diagnosis of Acute Aortic Syndromes on Non-Contrast CT Images with Radiomics-Based Machine Learning</title><title>Biology (Basel, Switzerland)</title><addtitle>Biology (Basel)</addtitle><description>We aimed to detect acute aortic syndromes (AAS) on non-contrast computed tomography (NCCT) images using a radiomics-based machine learning model. A total of 325 patients who underwent aortic CT angiography (CTA) were enrolled retrospectively from 2 medical centers in China to form the internal cohort (230 patients, 60 patients with AAS) and the external testing cohort (95 patients with AAS). The internal cohort was divided into the training cohort (
= 135), validation cohort (
= 49), and internal testing cohort (
= 46). The aortic mask was manually delineated on NCCT by a radiologist. Least Absolute Shrinkage and Selection Operator regression (LASSO) was used to filter out nine feature parameters; the Support Vector Machine (SVM) model showed the best performance. In the training and validation cohorts, the SVM model had an area under the curve (AUC) of 0.993 (95% CI, 0.965-1); accuracy (ACC), 0.946 (95% CI, 0.877-1); sensitivity, 0.9 (95% CI, 0.696-1); and specificity, 0.964 (95% CI, 0.903-1). In the internal testing cohort, the SVM model had an AUC of 0.997 (95% CI, 0.992-1); ACC, 0.957 (95% CI, 0.945-0.988); sensitivity, 0.889 (95% CI, 0.888-0.889); and specificity, 0.973 (95% CI, 0.959-1). In the external testing cohort, the ACC was 0.991 (95% CI, 0.937-1). This model can detect AAS on NCCT, reducing misdiagnosis and improving examinations and prognosis.</description><subject>acute aortic syndromes</subject><subject>Algorithms</subject><subject>Anabolic steroids</subject><subject>Angiography</subject><subject>Aorta</subject><subject>Collaboration</subject><subject>Comparative analysis</subject><subject>Computed tomography</subject><subject>Coronary vessels</subject><subject>CT imaging</subject><subject>Diagnosis</subject><subject>Discriminant analysis</subject><subject>Emergency medical care</subject><subject>Hematoma</subject><subject>Hospitals</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medical centers</subject><subject>Medical imaging</subject><subject>Medical imaging equipment</subject><subject>non-contrast CT</subject><subject>Patients</subject><subject>Radiomics</subject><subject>Tomography</subject><issn>2079-7737</issn><issn>2079-7737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiMEolXpmRuKxIVLWn97fULLQmGlBSQoZ8tfyXqV2MVOQPvv67CldCvsg62Zdx7rHU9VvYTgAmMBLrWPfez2EAEMMOZPqlMEuGg4x_zpg_tJdZ7zDpTFAWKYPa9OMBNcACROK_Peqy7E7HMd23ppptHVy5hGb-rv-2BTHFzJhPpLDM0qhjGpPNar63o9qK5kfvtxW39T1sfBm9y8U9nZ-rMyWx9cvXEqBR-6F9WzVvXZnd-dZ9WPqw_Xq0_N5uvH9Wq5aQyldGy0MQoiBBnTjAAKCQMMtA5Sx6wBLSRaKEsWAitnW66BdYwjqpnSCFEmBD6r1geujWonb5IfVNrLqLz8E4ipk2p21jtJBQGKWKQFIYSKVluMkIVUK7SwxKDCentg3Ux6cNa42Xp_BD3OBL-VXfwlIQCEYjYT3twRUvw5uTzKwWfj-l4FF6csEReIAizIokhfP5Lu4pRC6dWsgnTBKMf_VJ0qDnxoY3nYzFC55BQKiAnmRXXxH1XZ1pUvisG1vsSPCi4PBSbFnJNr701CIOc5k4_mrFS8etibe_3fqcK3Fk3NGw</recordid><startdate>20230221</startdate><enddate>20230221</enddate><creator>Ma, Zhuangxuan</creator><creator>Jin, Liang</creator><creator>Zhang, Lukai</creator><creator>Yang, Yuling</creator><creator>Tang, Yilin</creator><creator>Gao, Pan</creator><creator>Sun, Yingli</creator><creator>Li, Ming</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3296-2952</orcidid><orcidid>https://orcid.org/0000-0002-7552-7849</orcidid></search><sort><creationdate>20230221</creationdate><title>Diagnosis of Acute Aortic Syndromes on Non-Contrast CT Images with Radiomics-Based Machine Learning</title><author>Ma, Zhuangxuan ; Jin, Liang ; Zhang, Lukai ; Yang, Yuling ; Tang, Yilin ; Gao, Pan ; Sun, Yingli ; Li, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-bcca122166b6405146060fe15e6dc0f14b9ad4893aedf7b0de6725b6ab2256993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>acute aortic syndromes</topic><topic>Algorithms</topic><topic>Anabolic steroids</topic><topic>Angiography</topic><topic>Aorta</topic><topic>Collaboration</topic><topic>Comparative analysis</topic><topic>Computed tomography</topic><topic>Coronary vessels</topic><topic>CT imaging</topic><topic>Diagnosis</topic><topic>Discriminant analysis</topic><topic>Emergency medical care</topic><topic>Hematoma</topic><topic>Hospitals</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medical centers</topic><topic>Medical imaging</topic><topic>Medical imaging equipment</topic><topic>non-contrast CT</topic><topic>Patients</topic><topic>Radiomics</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhuangxuan</creatorcontrib><creatorcontrib>Jin, Liang</creatorcontrib><creatorcontrib>Zhang, Lukai</creatorcontrib><creatorcontrib>Yang, Yuling</creatorcontrib><creatorcontrib>Tang, Yilin</creatorcontrib><creatorcontrib>Gao, Pan</creatorcontrib><creatorcontrib>Sun, Yingli</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biology (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhuangxuan</au><au>Jin, Liang</au><au>Zhang, Lukai</au><au>Yang, Yuling</au><au>Tang, Yilin</au><au>Gao, Pan</au><au>Sun, Yingli</au><au>Li, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnosis of Acute Aortic Syndromes on Non-Contrast CT Images with Radiomics-Based Machine Learning</atitle><jtitle>Biology (Basel, Switzerland)</jtitle><addtitle>Biology (Basel)</addtitle><date>2023-02-21</date><risdate>2023</risdate><volume>12</volume><issue>3</issue><spage>337</spage><pages>337-</pages><issn>2079-7737</issn><eissn>2079-7737</eissn><abstract>We aimed to detect acute aortic syndromes (AAS) on non-contrast computed tomography (NCCT) images using a radiomics-based machine learning model. A total of 325 patients who underwent aortic CT angiography (CTA) were enrolled retrospectively from 2 medical centers in China to form the internal cohort (230 patients, 60 patients with AAS) and the external testing cohort (95 patients with AAS). The internal cohort was divided into the training cohort (
= 135), validation cohort (
= 49), and internal testing cohort (
= 46). The aortic mask was manually delineated on NCCT by a radiologist. Least Absolute Shrinkage and Selection Operator regression (LASSO) was used to filter out nine feature parameters; the Support Vector Machine (SVM) model showed the best performance. In the training and validation cohorts, the SVM model had an area under the curve (AUC) of 0.993 (95% CI, 0.965-1); accuracy (ACC), 0.946 (95% CI, 0.877-1); sensitivity, 0.9 (95% CI, 0.696-1); and specificity, 0.964 (95% CI, 0.903-1). In the internal testing cohort, the SVM model had an AUC of 0.997 (95% CI, 0.992-1); ACC, 0.957 (95% CI, 0.945-0.988); sensitivity, 0.889 (95% CI, 0.888-0.889); and specificity, 0.973 (95% CI, 0.959-1). In the external testing cohort, the ACC was 0.991 (95% CI, 0.937-1). This model can detect AAS on NCCT, reducing misdiagnosis and improving examinations and prognosis.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36979029</pmid><doi>10.3390/biology12030337</doi><orcidid>https://orcid.org/0000-0003-3296-2952</orcidid><orcidid>https://orcid.org/0000-0002-7552-7849</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-7737 |
ispartof | Biology (Basel, Switzerland), 2023-02, Vol.12 (3), p.337 |
issn | 2079-7737 2079-7737 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5940a4d2b944459fbd322d15ba28d4c2 |
source | Publicly Available Content Database; PubMed Central; Coronavirus Research Database |
subjects | acute aortic syndromes Algorithms Anabolic steroids Angiography Aorta Collaboration Comparative analysis Computed tomography Coronary vessels CT imaging Diagnosis Discriminant analysis Emergency medical care Hematoma Hospitals Learning algorithms Machine learning Medical centers Medical imaging Medical imaging equipment non-contrast CT Patients Radiomics Tomography |
title | Diagnosis of Acute Aortic Syndromes on Non-Contrast CT Images with Radiomics-Based Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnosis%20of%20Acute%20Aortic%20Syndromes%20on%20Non-Contrast%20CT%20Images%20with%20Radiomics-Based%20Machine%20Learning&rft.jtitle=Biology%20(Basel,%20Switzerland)&rft.au=Ma,%20Zhuangxuan&rft.date=2023-02-21&rft.volume=12&rft.issue=3&rft.spage=337&rft.pages=337-&rft.issn=2079-7737&rft.eissn=2079-7737&rft_id=info:doi/10.3390/biology12030337&rft_dat=%3Cgale_doaj_%3EA751913437%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c555t-bcca122166b6405146060fe15e6dc0f14b9ad4893aedf7b0de6725b6ab2256993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791586573&rft_id=info:pmid/36979029&rft_galeid=A751913437&rfr_iscdi=true |