Loading…

Diagnosis of Acute Aortic Syndromes on Non-Contrast CT Images with Radiomics-Based Machine Learning

We aimed to detect acute aortic syndromes (AAS) on non-contrast computed tomography (NCCT) images using a radiomics-based machine learning model. A total of 325 patients who underwent aortic CT angiography (CTA) were enrolled retrospectively from 2 medical centers in China to form the internal cohor...

Full description

Saved in:
Bibliographic Details
Published in:Biology (Basel, Switzerland) Switzerland), 2023-02, Vol.12 (3), p.337
Main Authors: Ma, Zhuangxuan, Jin, Liang, Zhang, Lukai, Yang, Yuling, Tang, Yilin, Gao, Pan, Sun, Yingli, Li, Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c555t-bcca122166b6405146060fe15e6dc0f14b9ad4893aedf7b0de6725b6ab2256993
cites cdi_FETCH-LOGICAL-c555t-bcca122166b6405146060fe15e6dc0f14b9ad4893aedf7b0de6725b6ab2256993
container_end_page
container_issue 3
container_start_page 337
container_title Biology (Basel, Switzerland)
container_volume 12
creator Ma, Zhuangxuan
Jin, Liang
Zhang, Lukai
Yang, Yuling
Tang, Yilin
Gao, Pan
Sun, Yingli
Li, Ming
description We aimed to detect acute aortic syndromes (AAS) on non-contrast computed tomography (NCCT) images using a radiomics-based machine learning model. A total of 325 patients who underwent aortic CT angiography (CTA) were enrolled retrospectively from 2 medical centers in China to form the internal cohort (230 patients, 60 patients with AAS) and the external testing cohort (95 patients with AAS). The internal cohort was divided into the training cohort ( = 135), validation cohort ( = 49), and internal testing cohort ( = 46). The aortic mask was manually delineated on NCCT by a radiologist. Least Absolute Shrinkage and Selection Operator regression (LASSO) was used to filter out nine feature parameters; the Support Vector Machine (SVM) model showed the best performance. In the training and validation cohorts, the SVM model had an area under the curve (AUC) of 0.993 (95% CI, 0.965-1); accuracy (ACC), 0.946 (95% CI, 0.877-1); sensitivity, 0.9 (95% CI, 0.696-1); and specificity, 0.964 (95% CI, 0.903-1). In the internal testing cohort, the SVM model had an AUC of 0.997 (95% CI, 0.992-1); ACC, 0.957 (95% CI, 0.945-0.988); sensitivity, 0.889 (95% CI, 0.888-0.889); and specificity, 0.973 (95% CI, 0.959-1). In the external testing cohort, the ACC was 0.991 (95% CI, 0.937-1). This model can detect AAS on NCCT, reducing misdiagnosis and improving examinations and prognosis.
doi_str_mv 10.3390/biology12030337
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5940a4d2b944459fbd322d15ba28d4c2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751913437</galeid><doaj_id>oai_doaj_org_article_5940a4d2b944459fbd322d15ba28d4c2</doaj_id><sourcerecordid>A751913437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-bcca122166b6405146060fe15e6dc0f14b9ad4893aedf7b0de6725b6ab2256993</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEolXpmRuKxIVLWn97fULLQmGlBSQoZ8tfyXqV2MVOQPvv67CldCvsg62Zdx7rHU9VvYTgAmMBLrWPfez2EAEMMOZPqlMEuGg4x_zpg_tJdZ7zDpTFAWKYPa9OMBNcACROK_Peqy7E7HMd23ppptHVy5hGb-rv-2BTHFzJhPpLDM0qhjGpPNar63o9qK5kfvtxW39T1sfBm9y8U9nZ-rMyWx9cvXEqBR-6F9WzVvXZnd-dZ9WPqw_Xq0_N5uvH9Wq5aQyldGy0MQoiBBnTjAAKCQMMtA5Sx6wBLSRaKEsWAitnW66BdYwjqpnSCFEmBD6r1geujWonb5IfVNrLqLz8E4ipk2p21jtJBQGKWKQFIYSKVluMkIVUK7SwxKDCentg3Ux6cNa42Xp_BD3OBL-VXfwlIQCEYjYT3twRUvw5uTzKwWfj-l4FF6csEReIAizIokhfP5Lu4pRC6dWsgnTBKMf_VJ0qDnxoY3nYzFC55BQKiAnmRXXxH1XZ1pUvisG1vsSPCi4PBSbFnJNr701CIOc5k4_mrFS8etibe_3fqcK3Fk3NGw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791586573</pqid></control><display><type>article</type><title>Diagnosis of Acute Aortic Syndromes on Non-Contrast CT Images with Radiomics-Based Machine Learning</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Ma, Zhuangxuan ; Jin, Liang ; Zhang, Lukai ; Yang, Yuling ; Tang, Yilin ; Gao, Pan ; Sun, Yingli ; Li, Ming</creator><creatorcontrib>Ma, Zhuangxuan ; Jin, Liang ; Zhang, Lukai ; Yang, Yuling ; Tang, Yilin ; Gao, Pan ; Sun, Yingli ; Li, Ming</creatorcontrib><description>We aimed to detect acute aortic syndromes (AAS) on non-contrast computed tomography (NCCT) images using a radiomics-based machine learning model. A total of 325 patients who underwent aortic CT angiography (CTA) were enrolled retrospectively from 2 medical centers in China to form the internal cohort (230 patients, 60 patients with AAS) and the external testing cohort (95 patients with AAS). The internal cohort was divided into the training cohort ( = 135), validation cohort ( = 49), and internal testing cohort ( = 46). The aortic mask was manually delineated on NCCT by a radiologist. Least Absolute Shrinkage and Selection Operator regression (LASSO) was used to filter out nine feature parameters; the Support Vector Machine (SVM) model showed the best performance. In the training and validation cohorts, the SVM model had an area under the curve (AUC) of 0.993 (95% CI, 0.965-1); accuracy (ACC), 0.946 (95% CI, 0.877-1); sensitivity, 0.9 (95% CI, 0.696-1); and specificity, 0.964 (95% CI, 0.903-1). In the internal testing cohort, the SVM model had an AUC of 0.997 (95% CI, 0.992-1); ACC, 0.957 (95% CI, 0.945-0.988); sensitivity, 0.889 (95% CI, 0.888-0.889); and specificity, 0.973 (95% CI, 0.959-1). In the external testing cohort, the ACC was 0.991 (95% CI, 0.937-1). This model can detect AAS on NCCT, reducing misdiagnosis and improving examinations and prognosis.</description><identifier>ISSN: 2079-7737</identifier><identifier>EISSN: 2079-7737</identifier><identifier>DOI: 10.3390/biology12030337</identifier><identifier>PMID: 36979029</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>acute aortic syndromes ; Algorithms ; Anabolic steroids ; Angiography ; Aorta ; Collaboration ; Comparative analysis ; Computed tomography ; Coronary vessels ; CT imaging ; Diagnosis ; Discriminant analysis ; Emergency medical care ; Hematoma ; Hospitals ; Learning algorithms ; Machine learning ; Medical centers ; Medical imaging ; Medical imaging equipment ; non-contrast CT ; Patients ; Radiomics ; Tomography</subject><ispartof>Biology (Basel, Switzerland), 2023-02, Vol.12 (3), p.337</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-bcca122166b6405146060fe15e6dc0f14b9ad4893aedf7b0de6725b6ab2256993</citedby><cites>FETCH-LOGICAL-c555t-bcca122166b6405146060fe15e6dc0f14b9ad4893aedf7b0de6725b6ab2256993</cites><orcidid>0000-0003-3296-2952 ; 0000-0002-7552-7849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791586573?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791586573?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25740,27911,27912,36999,37000,38503,43882,44577,53778,53780,74167,74881</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36979029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Zhuangxuan</creatorcontrib><creatorcontrib>Jin, Liang</creatorcontrib><creatorcontrib>Zhang, Lukai</creatorcontrib><creatorcontrib>Yang, Yuling</creatorcontrib><creatorcontrib>Tang, Yilin</creatorcontrib><creatorcontrib>Gao, Pan</creatorcontrib><creatorcontrib>Sun, Yingli</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><title>Diagnosis of Acute Aortic Syndromes on Non-Contrast CT Images with Radiomics-Based Machine Learning</title><title>Biology (Basel, Switzerland)</title><addtitle>Biology (Basel)</addtitle><description>We aimed to detect acute aortic syndromes (AAS) on non-contrast computed tomography (NCCT) images using a radiomics-based machine learning model. A total of 325 patients who underwent aortic CT angiography (CTA) were enrolled retrospectively from 2 medical centers in China to form the internal cohort (230 patients, 60 patients with AAS) and the external testing cohort (95 patients with AAS). The internal cohort was divided into the training cohort ( = 135), validation cohort ( = 49), and internal testing cohort ( = 46). The aortic mask was manually delineated on NCCT by a radiologist. Least Absolute Shrinkage and Selection Operator regression (LASSO) was used to filter out nine feature parameters; the Support Vector Machine (SVM) model showed the best performance. In the training and validation cohorts, the SVM model had an area under the curve (AUC) of 0.993 (95% CI, 0.965-1); accuracy (ACC), 0.946 (95% CI, 0.877-1); sensitivity, 0.9 (95% CI, 0.696-1); and specificity, 0.964 (95% CI, 0.903-1). In the internal testing cohort, the SVM model had an AUC of 0.997 (95% CI, 0.992-1); ACC, 0.957 (95% CI, 0.945-0.988); sensitivity, 0.889 (95% CI, 0.888-0.889); and specificity, 0.973 (95% CI, 0.959-1). In the external testing cohort, the ACC was 0.991 (95% CI, 0.937-1). This model can detect AAS on NCCT, reducing misdiagnosis and improving examinations and prognosis.</description><subject>acute aortic syndromes</subject><subject>Algorithms</subject><subject>Anabolic steroids</subject><subject>Angiography</subject><subject>Aorta</subject><subject>Collaboration</subject><subject>Comparative analysis</subject><subject>Computed tomography</subject><subject>Coronary vessels</subject><subject>CT imaging</subject><subject>Diagnosis</subject><subject>Discriminant analysis</subject><subject>Emergency medical care</subject><subject>Hematoma</subject><subject>Hospitals</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medical centers</subject><subject>Medical imaging</subject><subject>Medical imaging equipment</subject><subject>non-contrast CT</subject><subject>Patients</subject><subject>Radiomics</subject><subject>Tomography</subject><issn>2079-7737</issn><issn>2079-7737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiMEolXpmRuKxIVLWn97fULLQmGlBSQoZ8tfyXqV2MVOQPvv67CldCvsg62Zdx7rHU9VvYTgAmMBLrWPfez2EAEMMOZPqlMEuGg4x_zpg_tJdZ7zDpTFAWKYPa9OMBNcACROK_Peqy7E7HMd23ppptHVy5hGb-rv-2BTHFzJhPpLDM0qhjGpPNar63o9qK5kfvtxW39T1sfBm9y8U9nZ-rMyWx9cvXEqBR-6F9WzVvXZnd-dZ9WPqw_Xq0_N5uvH9Wq5aQyldGy0MQoiBBnTjAAKCQMMtA5Sx6wBLSRaKEsWAitnW66BdYwjqpnSCFEmBD6r1geujWonb5IfVNrLqLz8E4ipk2p21jtJBQGKWKQFIYSKVluMkIVUK7SwxKDCentg3Ux6cNa42Xp_BD3OBL-VXfwlIQCEYjYT3twRUvw5uTzKwWfj-l4FF6csEReIAizIokhfP5Lu4pRC6dWsgnTBKMf_VJ0qDnxoY3nYzFC55BQKiAnmRXXxH1XZ1pUvisG1vsSPCi4PBSbFnJNr701CIOc5k4_mrFS8etibe_3fqcK3Fk3NGw</recordid><startdate>20230221</startdate><enddate>20230221</enddate><creator>Ma, Zhuangxuan</creator><creator>Jin, Liang</creator><creator>Zhang, Lukai</creator><creator>Yang, Yuling</creator><creator>Tang, Yilin</creator><creator>Gao, Pan</creator><creator>Sun, Yingli</creator><creator>Li, Ming</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3296-2952</orcidid><orcidid>https://orcid.org/0000-0002-7552-7849</orcidid></search><sort><creationdate>20230221</creationdate><title>Diagnosis of Acute Aortic Syndromes on Non-Contrast CT Images with Radiomics-Based Machine Learning</title><author>Ma, Zhuangxuan ; Jin, Liang ; Zhang, Lukai ; Yang, Yuling ; Tang, Yilin ; Gao, Pan ; Sun, Yingli ; Li, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-bcca122166b6405146060fe15e6dc0f14b9ad4893aedf7b0de6725b6ab2256993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>acute aortic syndromes</topic><topic>Algorithms</topic><topic>Anabolic steroids</topic><topic>Angiography</topic><topic>Aorta</topic><topic>Collaboration</topic><topic>Comparative analysis</topic><topic>Computed tomography</topic><topic>Coronary vessels</topic><topic>CT imaging</topic><topic>Diagnosis</topic><topic>Discriminant analysis</topic><topic>Emergency medical care</topic><topic>Hematoma</topic><topic>Hospitals</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medical centers</topic><topic>Medical imaging</topic><topic>Medical imaging equipment</topic><topic>non-contrast CT</topic><topic>Patients</topic><topic>Radiomics</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhuangxuan</creatorcontrib><creatorcontrib>Jin, Liang</creatorcontrib><creatorcontrib>Zhang, Lukai</creatorcontrib><creatorcontrib>Yang, Yuling</creatorcontrib><creatorcontrib>Tang, Yilin</creatorcontrib><creatorcontrib>Gao, Pan</creatorcontrib><creatorcontrib>Sun, Yingli</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biology (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhuangxuan</au><au>Jin, Liang</au><au>Zhang, Lukai</au><au>Yang, Yuling</au><au>Tang, Yilin</au><au>Gao, Pan</au><au>Sun, Yingli</au><au>Li, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnosis of Acute Aortic Syndromes on Non-Contrast CT Images with Radiomics-Based Machine Learning</atitle><jtitle>Biology (Basel, Switzerland)</jtitle><addtitle>Biology (Basel)</addtitle><date>2023-02-21</date><risdate>2023</risdate><volume>12</volume><issue>3</issue><spage>337</spage><pages>337-</pages><issn>2079-7737</issn><eissn>2079-7737</eissn><abstract>We aimed to detect acute aortic syndromes (AAS) on non-contrast computed tomography (NCCT) images using a radiomics-based machine learning model. A total of 325 patients who underwent aortic CT angiography (CTA) were enrolled retrospectively from 2 medical centers in China to form the internal cohort (230 patients, 60 patients with AAS) and the external testing cohort (95 patients with AAS). The internal cohort was divided into the training cohort ( = 135), validation cohort ( = 49), and internal testing cohort ( = 46). The aortic mask was manually delineated on NCCT by a radiologist. Least Absolute Shrinkage and Selection Operator regression (LASSO) was used to filter out nine feature parameters; the Support Vector Machine (SVM) model showed the best performance. In the training and validation cohorts, the SVM model had an area under the curve (AUC) of 0.993 (95% CI, 0.965-1); accuracy (ACC), 0.946 (95% CI, 0.877-1); sensitivity, 0.9 (95% CI, 0.696-1); and specificity, 0.964 (95% CI, 0.903-1). In the internal testing cohort, the SVM model had an AUC of 0.997 (95% CI, 0.992-1); ACC, 0.957 (95% CI, 0.945-0.988); sensitivity, 0.889 (95% CI, 0.888-0.889); and specificity, 0.973 (95% CI, 0.959-1). In the external testing cohort, the ACC was 0.991 (95% CI, 0.937-1). This model can detect AAS on NCCT, reducing misdiagnosis and improving examinations and prognosis.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36979029</pmid><doi>10.3390/biology12030337</doi><orcidid>https://orcid.org/0000-0003-3296-2952</orcidid><orcidid>https://orcid.org/0000-0002-7552-7849</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-7737
ispartof Biology (Basel, Switzerland), 2023-02, Vol.12 (3), p.337
issn 2079-7737
2079-7737
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5940a4d2b944459fbd322d15ba28d4c2
source Publicly Available Content Database; PubMed Central; Coronavirus Research Database
subjects acute aortic syndromes
Algorithms
Anabolic steroids
Angiography
Aorta
Collaboration
Comparative analysis
Computed tomography
Coronary vessels
CT imaging
Diagnosis
Discriminant analysis
Emergency medical care
Hematoma
Hospitals
Learning algorithms
Machine learning
Medical centers
Medical imaging
Medical imaging equipment
non-contrast CT
Patients
Radiomics
Tomography
title Diagnosis of Acute Aortic Syndromes on Non-Contrast CT Images with Radiomics-Based Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnosis%20of%20Acute%20Aortic%20Syndromes%20on%20Non-Contrast%20CT%20Images%20with%20Radiomics-Based%20Machine%20Learning&rft.jtitle=Biology%20(Basel,%20Switzerland)&rft.au=Ma,%20Zhuangxuan&rft.date=2023-02-21&rft.volume=12&rft.issue=3&rft.spage=337&rft.pages=337-&rft.issn=2079-7737&rft.eissn=2079-7737&rft_id=info:doi/10.3390/biology12030337&rft_dat=%3Cgale_doaj_%3EA751913437%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c555t-bcca122166b6405146060fe15e6dc0f14b9ad4893aedf7b0de6725b6ab2256993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791586573&rft_id=info:pmid/36979029&rft_galeid=A751913437&rfr_iscdi=true