Loading…

A Cascade Disaster Caused by Geological and Coupled Hydro-Mechanical Factors—Water Inrush Mechanism from Karst Collapse Column under Confining Pressure

The water inrush from karst collapse column (KCC) is a cascading, vicious cycle disaster caused by geological and mining activities, that can cause serious casualties and property losses. The key to preventing this risk is to study the mechanism of water inrush under confining pressure. Aiming at th...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2017-12, Vol.10 (12), p.1938
Main Authors: Li, Hao, Bai, Haibo, Wu, Jianjun, Ma, Zhanguo, Ma, Kai, Wu, Guangming, Du, Yabo, He, Shixin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The water inrush from karst collapse column (KCC) is a cascading, vicious cycle disaster caused by geological and mining activities, that can cause serious casualties and property losses. The key to preventing this risk is to study the mechanism of water inrush under confining pressure. Aiming at the investigationg the characteristics of the KCC named X1 in Chensilou mine, a series of methods, including connectivity experiments, water pressure monitoring tests in two side-walls, and numerical simulations based on plastic damage-seepage (PD-S) theory have been developed. The methods are used to test the security of the 2519 mining area, the damage thickness, pore water pressure, and seepage vector in the X1. The results indicate that the X1 has a certain water blocking capacity. In addition, with the decrease of confining pressure and increase of shear stress, deviatoric stress could cause the increase of permeability, the reduction of strength, and the reduction of pore water pressure in KCC. Therefore the increased effective stress in the rock will force the rock to become more fractured. Conversely, the broken rock could cause the change of stress, and further initiate new plastic strains, damage and pore water pressure until a new equilibrium is reached. This cascading water inrush mechanism will contribute to the exploitation of deep coal resources in complex geological and hydrogeological conditions.
ISSN:1996-1073
1996-1073
DOI:10.3390/en10121938