Loading…
Experimental evidence for Zeeman spin–orbit coupling in layered antiferromagnetic conductors
Most of solid-state spin physics arising from spin–orbit coupling, from fundamental phenomena to industrial applications, relies on symmetry-protected degeneracies. So does the Zeeman spin–orbit coupling, expected to manifest itself in a wide range of antiferromagnetic conductors. Yet, experimental...
Saved in:
Published in: | npj quantum materials 2021-02, Vol.6 (1), p.1-7, Article 11 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c529t-37f506afa7e0b89e783cc1caffa5cd1161cc78c30ec863ba4f867b4467a623383 |
---|---|
cites | cdi_FETCH-LOGICAL-c529t-37f506afa7e0b89e783cc1caffa5cd1161cc78c30ec863ba4f867b4467a623383 |
container_end_page | 7 |
container_issue | 1 |
container_start_page | 1 |
container_title | npj quantum materials |
container_volume | 6 |
creator | Ramazashvili, R. Grigoriev, P. D. Helm, T. Kollmannsberger, F. Kunz, M. Biberacher, W. Kampert, E. Fujiwara, H. Erb, A. Wosnitza, J. Gross, R. Kartsovnik, M. V. |
description | Most of solid-state spin physics arising from spin–orbit coupling, from fundamental phenomena to industrial applications, relies on symmetry-protected degeneracies. So does the Zeeman spin–orbit coupling, expected to manifest itself in a wide range of antiferromagnetic conductors. Yet, experimental proof of this phenomenon has been lacking. Here we demonstrate that the Néel state of the layered organic superconductor
κ
-(BETS)
2
FeBr
4
shows no spin modulation of the Shubnikov–de Haas oscillations, contrary to its paramagnetic state. This is unambiguous evidence for the spin degeneracy of Landau levels, a direct manifestation of the Zeeman spin–orbit coupling. Likewise, we show that spin modulation is absent in electron-doped Nd
1.85
Ce
0.15
CuO
4
, which evidences the presence of Néel order in this cuprate superconductor even at optimal doping. Obtained on two very different materials, our results demonstrate the generic character of the Zeeman spin–orbit coupling. |
doi_str_mv | 10.1038/s41535-021-00309-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_595509797c574e629b6c37d194867979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_595509797c574e629b6c37d194867979</doaj_id><sourcerecordid>2486621124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-37f506afa7e0b89e783cc1caffa5cd1161cc78c30ec863ba4f867b4467a623383</originalsourceid><addsrcrecordid>eNp9kbtOHDEUhkdRIoEIL0A1ElWKCb5fSoQIIK1EExqKWB7P8carWXtiz6LQ5R3yhjwJhkEJNFS2jr7_k4__pjnC6CtGVJ0UhjnlHSK4Q4gi3YkPzT6hWnZMMPXx1X2vOSxlg1BFsWJC7Dc_zn9PkMMW4mzHFu7CANFB61NubwG2NrZlCvHhz9-U-zC3Lu2mMcR1G2I72nvIMLQ2zsFDzmlr1xHm4CoVh52bUy6fm0_ejgUOX86D5ubb-fezy251fXF1drrqHCd67qj0HAnrrQTUKw1SUeews95b7gaMBXZOKkcROCVob5lXQvaMCWkFoVTRg-Zq8Q7JbsxUF7L53iQbzPMg5bWxuT5tBMM150hLLR2XDATRvXBUDliz6qzz6vqyuH7a8Y3q8nRlnmaIUIGFpHe4sscLO-X0awdlNpu0y7Guakj1ifrPhFWKLJTLqZQM_p8WI_NUoVkqrGZsnis0ooboEioVjmvI_9XvpB4BRK2egg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486621124</pqid></control><display><type>article</type><title>Experimental evidence for Zeeman spin–orbit coupling in layered antiferromagnetic conductors</title><source>ProQuest - Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ramazashvili, R. ; Grigoriev, P. D. ; Helm, T. ; Kollmannsberger, F. ; Kunz, M. ; Biberacher, W. ; Kampert, E. ; Fujiwara, H. ; Erb, A. ; Wosnitza, J. ; Gross, R. ; Kartsovnik, M. V.</creator><creatorcontrib>Ramazashvili, R. ; Grigoriev, P. D. ; Helm, T. ; Kollmannsberger, F. ; Kunz, M. ; Biberacher, W. ; Kampert, E. ; Fujiwara, H. ; Erb, A. ; Wosnitza, J. ; Gross, R. ; Kartsovnik, M. V.</creatorcontrib><description>Most of solid-state spin physics arising from spin–orbit coupling, from fundamental phenomena to industrial applications, relies on symmetry-protected degeneracies. So does the Zeeman spin–orbit coupling, expected to manifest itself in a wide range of antiferromagnetic conductors. Yet, experimental proof of this phenomenon has been lacking. Here we demonstrate that the Néel state of the layered organic superconductor
κ
-(BETS)
2
FeBr
4
shows no spin modulation of the Shubnikov–de Haas oscillations, contrary to its paramagnetic state. This is unambiguous evidence for the spin degeneracy of Landau levels, a direct manifestation of the Zeeman spin–orbit coupling. Likewise, we show that spin modulation is absent in electron-doped Nd
1.85
Ce
0.15
CuO
4
, which evidences the presence of Néel order in this cuprate superconductor even at optimal doping. Obtained on two very different materials, our results demonstrate the generic character of the Zeeman spin–orbit coupling.</description><identifier>ISSN: 2397-4648</identifier><identifier>EISSN: 2397-4648</identifier><identifier>DOI: 10.1038/s41535-021-00309-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/995 ; 639/766/119/995 ; Antiferromagnetism ; Condensed Matter ; Condensed Matter Physics ; Conductors ; Electron spin ; Industrial applications ; Modulation ; Organic superconductors ; Physics ; Physics and Astronomy ; Quantum Physics ; Spin-orbit interactions ; Strongly Correlated Electrons ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>npj quantum materials, 2021-02, Vol.6 (1), p.1-7, Article 11</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-37f506afa7e0b89e783cc1caffa5cd1161cc78c30ec863ba4f867b4467a623383</citedby><cites>FETCH-LOGICAL-c529t-37f506afa7e0b89e783cc1caffa5cd1161cc78c30ec863ba4f867b4467a623383</cites><orcidid>0000-0001-5133-8253 ; 0000-0002-3011-0169 ; 0000-0002-0938-8537 ; 0000-0002-4125-1215 ; 0000-0002-7159-8578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2486621124?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25752,27923,27924,37011,44589</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02361673$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramazashvili, R.</creatorcontrib><creatorcontrib>Grigoriev, P. D.</creatorcontrib><creatorcontrib>Helm, T.</creatorcontrib><creatorcontrib>Kollmannsberger, F.</creatorcontrib><creatorcontrib>Kunz, M.</creatorcontrib><creatorcontrib>Biberacher, W.</creatorcontrib><creatorcontrib>Kampert, E.</creatorcontrib><creatorcontrib>Fujiwara, H.</creatorcontrib><creatorcontrib>Erb, A.</creatorcontrib><creatorcontrib>Wosnitza, J.</creatorcontrib><creatorcontrib>Gross, R.</creatorcontrib><creatorcontrib>Kartsovnik, M. V.</creatorcontrib><title>Experimental evidence for Zeeman spin–orbit coupling in layered antiferromagnetic conductors</title><title>npj quantum materials</title><addtitle>npj Quantum Mater</addtitle><description>Most of solid-state spin physics arising from spin–orbit coupling, from fundamental phenomena to industrial applications, relies on symmetry-protected degeneracies. So does the Zeeman spin–orbit coupling, expected to manifest itself in a wide range of antiferromagnetic conductors. Yet, experimental proof of this phenomenon has been lacking. Here we demonstrate that the Néel state of the layered organic superconductor
κ
-(BETS)
2
FeBr
4
shows no spin modulation of the Shubnikov–de Haas oscillations, contrary to its paramagnetic state. This is unambiguous evidence for the spin degeneracy of Landau levels, a direct manifestation of the Zeeman spin–orbit coupling. Likewise, we show that spin modulation is absent in electron-doped Nd
1.85
Ce
0.15
CuO
4
, which evidences the presence of Néel order in this cuprate superconductor even at optimal doping. Obtained on two very different materials, our results demonstrate the generic character of the Zeeman spin–orbit coupling.</description><subject>639/301/119/995</subject><subject>639/766/119/995</subject><subject>Antiferromagnetism</subject><subject>Condensed Matter</subject><subject>Condensed Matter Physics</subject><subject>Conductors</subject><subject>Electron spin</subject><subject>Industrial applications</subject><subject>Modulation</subject><subject>Organic superconductors</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Spin-orbit interactions</subject><subject>Strongly Correlated Electrons</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>2397-4648</issn><issn>2397-4648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kbtOHDEUhkdRIoEIL0A1ElWKCb5fSoQIIK1EExqKWB7P8carWXtiz6LQ5R3yhjwJhkEJNFS2jr7_k4__pjnC6CtGVJ0UhjnlHSK4Q4gi3YkPzT6hWnZMMPXx1X2vOSxlg1BFsWJC7Dc_zn9PkMMW4mzHFu7CANFB61NubwG2NrZlCvHhz9-U-zC3Lu2mMcR1G2I72nvIMLQ2zsFDzmlr1xHm4CoVh52bUy6fm0_ejgUOX86D5ubb-fezy251fXF1drrqHCd67qj0HAnrrQTUKw1SUeews95b7gaMBXZOKkcROCVob5lXQvaMCWkFoVTRg-Zq8Q7JbsxUF7L53iQbzPMg5bWxuT5tBMM150hLLR2XDATRvXBUDliz6qzz6vqyuH7a8Y3q8nRlnmaIUIGFpHe4sscLO-X0awdlNpu0y7Guakj1ifrPhFWKLJTLqZQM_p8WI_NUoVkqrGZsnis0ooboEioVjmvI_9XvpB4BRK2egg</recordid><startdate>20210205</startdate><enddate>20210205</enddate><creator>Ramazashvili, R.</creator><creator>Grigoriev, P. D.</creator><creator>Helm, T.</creator><creator>Kollmannsberger, F.</creator><creator>Kunz, M.</creator><creator>Biberacher, W.</creator><creator>Kampert, E.</creator><creator>Fujiwara, H.</creator><creator>Erb, A.</creator><creator>Wosnitza, J.</creator><creator>Gross, R.</creator><creator>Kartsovnik, M. V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature publishing</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5133-8253</orcidid><orcidid>https://orcid.org/0000-0002-3011-0169</orcidid><orcidid>https://orcid.org/0000-0002-0938-8537</orcidid><orcidid>https://orcid.org/0000-0002-4125-1215</orcidid><orcidid>https://orcid.org/0000-0002-7159-8578</orcidid></search><sort><creationdate>20210205</creationdate><title>Experimental evidence for Zeeman spin–orbit coupling in layered antiferromagnetic conductors</title><author>Ramazashvili, R. ; Grigoriev, P. D. ; Helm, T. ; Kollmannsberger, F. ; Kunz, M. ; Biberacher, W. ; Kampert, E. ; Fujiwara, H. ; Erb, A. ; Wosnitza, J. ; Gross, R. ; Kartsovnik, M. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-37f506afa7e0b89e783cc1caffa5cd1161cc78c30ec863ba4f867b4467a623383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/119/995</topic><topic>639/766/119/995</topic><topic>Antiferromagnetism</topic><topic>Condensed Matter</topic><topic>Condensed Matter Physics</topic><topic>Conductors</topic><topic>Electron spin</topic><topic>Industrial applications</topic><topic>Modulation</topic><topic>Organic superconductors</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Spin-orbit interactions</topic><topic>Strongly Correlated Electrons</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramazashvili, R.</creatorcontrib><creatorcontrib>Grigoriev, P. D.</creatorcontrib><creatorcontrib>Helm, T.</creatorcontrib><creatorcontrib>Kollmannsberger, F.</creatorcontrib><creatorcontrib>Kunz, M.</creatorcontrib><creatorcontrib>Biberacher, W.</creatorcontrib><creatorcontrib>Kampert, E.</creatorcontrib><creatorcontrib>Fujiwara, H.</creatorcontrib><creatorcontrib>Erb, A.</creatorcontrib><creatorcontrib>Wosnitza, J.</creatorcontrib><creatorcontrib>Gross, R.</creatorcontrib><creatorcontrib>Kartsovnik, M. V.</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>npj quantum materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramazashvili, R.</au><au>Grigoriev, P. D.</au><au>Helm, T.</au><au>Kollmannsberger, F.</au><au>Kunz, M.</au><au>Biberacher, W.</au><au>Kampert, E.</au><au>Fujiwara, H.</au><au>Erb, A.</au><au>Wosnitza, J.</au><au>Gross, R.</au><au>Kartsovnik, M. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental evidence for Zeeman spin–orbit coupling in layered antiferromagnetic conductors</atitle><jtitle>npj quantum materials</jtitle><stitle>npj Quantum Mater</stitle><date>2021-02-05</date><risdate>2021</risdate><volume>6</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>11</artnum><issn>2397-4648</issn><eissn>2397-4648</eissn><abstract>Most of solid-state spin physics arising from spin–orbit coupling, from fundamental phenomena to industrial applications, relies on symmetry-protected degeneracies. So does the Zeeman spin–orbit coupling, expected to manifest itself in a wide range of antiferromagnetic conductors. Yet, experimental proof of this phenomenon has been lacking. Here we demonstrate that the Néel state of the layered organic superconductor
κ
-(BETS)
2
FeBr
4
shows no spin modulation of the Shubnikov–de Haas oscillations, contrary to its paramagnetic state. This is unambiguous evidence for the spin degeneracy of Landau levels, a direct manifestation of the Zeeman spin–orbit coupling. Likewise, we show that spin modulation is absent in electron-doped Nd
1.85
Ce
0.15
CuO
4
, which evidences the presence of Néel order in this cuprate superconductor even at optimal doping. Obtained on two very different materials, our results demonstrate the generic character of the Zeeman spin–orbit coupling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41535-021-00309-6</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5133-8253</orcidid><orcidid>https://orcid.org/0000-0002-3011-0169</orcidid><orcidid>https://orcid.org/0000-0002-0938-8537</orcidid><orcidid>https://orcid.org/0000-0002-4125-1215</orcidid><orcidid>https://orcid.org/0000-0002-7159-8578</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2397-4648 |
ispartof | npj quantum materials, 2021-02, Vol.6 (1), p.1-7, Article 11 |
issn | 2397-4648 2397-4648 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_595509797c574e629b6c37d194867979 |
source | ProQuest - Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/119/995 639/766/119/995 Antiferromagnetism Condensed Matter Condensed Matter Physics Conductors Electron spin Industrial applications Modulation Organic superconductors Physics Physics and Astronomy Quantum Physics Spin-orbit interactions Strongly Correlated Electrons Structural Materials Surfaces and Interfaces Thin Films |
title | Experimental evidence for Zeeman spin–orbit coupling in layered antiferromagnetic conductors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20evidence%20for%20Zeeman%20spin%E2%80%93orbit%20coupling%20in%20layered%20antiferromagnetic%20conductors&rft.jtitle=npj%20quantum%20materials&rft.au=Ramazashvili,%20R.&rft.date=2021-02-05&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=11&rft.issn=2397-4648&rft.eissn=2397-4648&rft_id=info:doi/10.1038/s41535-021-00309-6&rft_dat=%3Cproquest_doaj_%3E2486621124%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-37f506afa7e0b89e783cc1caffa5cd1161cc78c30ec863ba4f867b4467a623383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2486621124&rft_id=info:pmid/&rfr_iscdi=true |