Loading…
Influence of Surface State on the Corrosion Behavior of Si-Reinforced F/M Steels under Solid-Phase Oxygen-Controlled Static Liquid LBE Environment
Since F/M steel is one of the leading candidate materials for the lead-cooled fast reactor (LFR), its compatibility with the liquid LBE environment is an essential issue before application. One major way to improve LBE corrosion resistance is to control the oxygen concertation in liquid LBE for the...
Saved in:
Published in: | Metals (Basel ) 2024-07, Vol.14 (7), p.810 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Since F/M steel is one of the leading candidate materials for the lead-cooled fast reactor (LFR), its compatibility with the liquid LBE environment is an essential issue before application. One major way to improve LBE corrosion resistance is to control the oxygen concertation in liquid LBE for the growth of a stable, protective oxide layer on the surface of the structure material. However, the influence of the surface state on corrosion behavior is a more realistic issue when it comes to practical applications. In this study, the corrosion behavior of Si-reinforced 9Cr and 11Cr F/M steels with different surface states was investigated by a static liquid LBE corrosion test under solid-phase oxygen-controlled conditions. The result showed that at 550 °C, the coarse surface state caused dissolution behavior at the initial stage of corrosion, while the fine surface state formed the oxide layer. Moreover, at 610 °C, Si-reinforced 11Cr F/M steel shows better liquid LBE corrosion resistance due to its thinner oxide layer formation. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met14070810 |