Loading…
NTRK1 knockdown induces mouse cognitive impairment and hippocampal neuronal damage through mitophagy suppression via inactivating the AMPK/ULK1/FUNDC1 pathway
Hippocampal neuronal damage may induce cognitive impairment. Neurotrophic tyrosine kinase receptor 1 (NTRK1) reportedly regulates neuronal damage, although the underlying mechanism remains unclear. The present study aimed to investigate the role of NTRK1 in mouse hippocampal neuronal damage and the...
Saved in:
Published in: | Cell death discovery 2023-10, Vol.9 (1), p.404-404, Article 404 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hippocampal neuronal damage may induce cognitive impairment. Neurotrophic tyrosine kinase receptor 1 (NTRK1) reportedly regulates neuronal damage, although the underlying mechanism remains unclear. The present study aimed to investigate the role of NTRK1 in mouse hippocampal neuronal damage and the specific mechanism. A mouse NTRK1-knockdown model was established and subjected to pre-treatment with BAY-3827, followed by a behavioral test, Nissl staining, and NeuN immunofluorescence (IF) staining to evaluate the cognitive impairment and hippocampal neuronal damage. Next, an in vitro analysis was conducted using the CCK-8 assay, TUNEL assay, NeuN IF staining, DCFH-DA staining, JC-1 staining, ATP content test, mRFP-eGFP-LC3 assay, and LC3-II IF staining to elucidate the effect of NTRK1 on mouse hippocampal neuronal activity, apoptosis, damage, mitochondrial function, and autophagy. Subsequently, rescue experiments were performed by subjecting the NTRK1-knockdown neurons to pre-treatment with O304 and Rapamycin. The AMPK/ULK1/FUNDC1 pathway activity and mitophagy were detected using western blotting (WB) analysis. Resultantly, in vivo analysis revealed that NTRK1 knockdown induced mouse cognitive impairment and hippocampal tissue damage, in addition to inactivating the AMPK/ULK1/FUNDC1 pathway activity and mitophagy in the hippocampal tissues of mice. The treatment with BAY-3827 exacerbated the mouse depressive-like behavior induced by NTRK1 knockdown. The results of in vitro analysis indicated that NTRK1 knockdown attenuated viability, NeuN expression, ATP production, mitochondrial membrane potential, and mitophagy, while enhancing apoptosis and ROS production in mouse hippocampal neurons. Conversely, pre-treatment with O304 and rapamycin abrogated the suppression of mitophagy and the promotion of neuronal damage induced upon NTRK1 silencing. Conclusively, NTRK1 knockdown induces mouse hippocampal neuronal damage through the suppression of mitophagy via inactivating the AMPK/ULK1/FUNDC1 pathway. This finding would provide insight leading to the development of novel strategies for the treatment of cognitive impairment induced due to hippocampal neuronal damage. |
---|---|
ISSN: | 2058-7716 2058-7716 |
DOI: | 10.1038/s41420-023-01685-7 |