Loading…

Comparison of the Air Pollution Mathematical Model of PM10 and Moss Biomonitoring Results in the Tritia Region

Knowing the relationship between pollution sources and air pollution concentrations is crucial. Mathematical modeling is a suitable method for the assessment of this relationship. The aim of this research was to compare the results of the Analytical Dispersion Modelling Supercomputer System (ADMOSS)...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2021-06, Vol.12 (6), p.656
Main Authors: Svozilík, Vladislav, Svozilíková Krakovská, Aneta, Bitta, Jan, Jančík, Petr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Knowing the relationship between pollution sources and air pollution concentrations is crucial. Mathematical modeling is a suitable method for the assessment of this relationship. The aim of this research was to compare the results of the Analytical Dispersion Modelling Supercomputer System (ADMOSS), which is used for air pollution modeling in large areas, with the results of moss biomonitoring. For comparison purposes, air pollution mathematical modeling and the collection of moss samples for biomonitoring in the Czech–Polish–Slovak border area in the European Grouping of Territorial Cooperation (EGTC) Tritia were carried out. Moss samples were analyzed by multi-element instrumental neutron activation analysis (INAA). The INAA results were statistically processed using the correlation-matrix-based hierarchical clustering and correlation analysis of the biomonitoring results and ADMOSS results. Biomonitoring using bryophytes proved to be suitable for the verification of mathematical models of air pollution due to the ability of bryophytes to capture the long-term deposition of pollutants and the resulting possibility of finding the real distribution of pollutants in the area, as well as identify the specific chemical elements, the distribution of which coincides with the mathematical model.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos12060656