Loading…
Post-surjectivity and balancedness of cellular automata over groups
We discuss cellular automata over arbitrary finitely generated groups. Wecall a cellular automaton post-surjective if for any pair of asymptoticconfigurations, every pre-image of one is asymptotic to a pre-image of theother. The well known dual concept is pre-injectivity: a cellular automaton ispre-...
Saved in:
Published in: | Discrete mathematics and theoretical computer science 2017-01, Vol.19 (3) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Discrete mathematics and theoretical computer science |
container_volume | 19 |
creator | Capobianco, Silvio Kari, Jarkko Taati, Siamak |
description | We discuss cellular automata over arbitrary finitely generated groups. Wecall a cellular automaton post-surjective if for any pair of asymptoticconfigurations, every pre-image of one is asymptotic to a pre-image of theother. The well known dual concept is pre-injectivity: a cellular automaton ispre-injective if distinct asymptotic configurations have distinct images. Weprove that pre-injective, post-surjective cellular automata are reversible.Moreover, on sofic groups, post-surjectivity alone implies reversibility. Wealso prove that reversible cellular automata over arbitrary groups arebalanced, that is, they preserve the uniform measure on the configurationspace. |
doi_str_mv | 10.23638/DMTCS-19-3-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5994c11558f84462b2ef32bb7d48e21d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5994c11558f84462b2ef32bb7d48e21d</doaj_id><sourcerecordid>1967042045</sourcerecordid><originalsourceid>FETCH-LOGICAL-d249t-c97e361ff4ba64b9358255100676c5c24e8142fb863cac09234dd141bf96300e3</originalsourceid><addsrcrecordid>eNotzklLAzEAhuEgCNbl6H3AczT7JEcZt0JFwXoOWcsM00lNMoX-e4v19MF7ePgAuMXonlBB5cPT-7r7glhBCtkZWGAqOJSIowtwWcqAECaKtQvQfaZSYZnzEFzt9309NGbyjTWjmVzwUyilSbFxYRzn0eTGzDVtTTVN2ofcbHKad-UanEczlnDzv1fg--V53b3B1cfrsntcQU-YqtCpNlCBY2TWCGYV5ZJwjhESrXDcERYkZiRaKagzDilCmfeYYRuVoAgFegWWJ9cnM-hd7rcmH3Qyvf4LKW-0ybV3Y9BcKeYw5lxGyZggloRIibWtZzIQ7I_W3cna5fQzh1L1kOY8He9rrESLGEGM01_xOmJ3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967042045</pqid></control><display><type>article</type><title>Post-surjectivity and balancedness of cellular automata over groups</title><source>Publicly Available Content Database</source><creator>Capobianco, Silvio ; Kari, Jarkko ; Taati, Siamak</creator><creatorcontrib>Capobianco, Silvio ; Kari, Jarkko ; Taati, Siamak</creatorcontrib><description>We discuss cellular automata over arbitrary finitely generated groups. Wecall a cellular automaton post-surjective if for any pair of asymptoticconfigurations, every pre-image of one is asymptotic to a pre-image of theother. The well known dual concept is pre-injectivity: a cellular automaton ispre-injective if distinct asymptotic configurations have distinct images. Weprove that pre-injective, post-surjective cellular automata are reversible.Moreover, on sofic groups, post-surjectivity alone implies reversibility. Wealso prove that reversible cellular automata over arbitrary groups arebalanced, that is, they preserve the uniform measure on the configurationspace.</description><identifier>EISSN: 1365-8050</identifier><identifier>DOI: 10.23638/DMTCS-19-3-4</identifier><language>eng</language><publisher>Nancy: DMTCS</publisher><subject>37b15, 68q80, 37b10 ; Asymptotic properties ; Cellular automata ; Cellular biology ; Configurations ; mathematics - dynamical systems ; nonlinear sciences - cellular automata and lattice gases ; Simulation</subject><ispartof>Discrete mathematics and theoretical computer science, 2017-01, Vol.19 (3)</ispartof><rights>Copyright DMTCS 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0670-6138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1967042045?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Capobianco, Silvio</creatorcontrib><creatorcontrib>Kari, Jarkko</creatorcontrib><creatorcontrib>Taati, Siamak</creatorcontrib><title>Post-surjectivity and balancedness of cellular automata over groups</title><title>Discrete mathematics and theoretical computer science</title><description>We discuss cellular automata over arbitrary finitely generated groups. Wecall a cellular automaton post-surjective if for any pair of asymptoticconfigurations, every pre-image of one is asymptotic to a pre-image of theother. The well known dual concept is pre-injectivity: a cellular automaton ispre-injective if distinct asymptotic configurations have distinct images. Weprove that pre-injective, post-surjective cellular automata are reversible.Moreover, on sofic groups, post-surjectivity alone implies reversibility. Wealso prove that reversible cellular automata over arbitrary groups arebalanced, that is, they preserve the uniform measure on the configurationspace.</description><subject>37b15, 68q80, 37b10</subject><subject>Asymptotic properties</subject><subject>Cellular automata</subject><subject>Cellular biology</subject><subject>Configurations</subject><subject>mathematics - dynamical systems</subject><subject>nonlinear sciences - cellular automata and lattice gases</subject><subject>Simulation</subject><issn>1365-8050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNotzklLAzEAhuEgCNbl6H3AczT7JEcZt0JFwXoOWcsM00lNMoX-e4v19MF7ePgAuMXonlBB5cPT-7r7glhBCtkZWGAqOJSIowtwWcqAECaKtQvQfaZSYZnzEFzt9309NGbyjTWjmVzwUyilSbFxYRzn0eTGzDVtTTVN2ofcbHKad-UanEczlnDzv1fg--V53b3B1cfrsntcQU-YqtCpNlCBY2TWCGYV5ZJwjhESrXDcERYkZiRaKagzDilCmfeYYRuVoAgFegWWJ9cnM-hd7rcmH3Qyvf4LKW-0ybV3Y9BcKeYw5lxGyZggloRIibWtZzIQ7I_W3cna5fQzh1L1kOY8He9rrESLGEGM01_xOmJ3</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Capobianco, Silvio</creator><creator>Kari, Jarkko</creator><creator>Taati, Siamak</creator><general>DMTCS</general><general>Discrete Mathematics & Theoretical Computer Science</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0670-6138</orcidid></search><sort><creationdate>20170101</creationdate><title>Post-surjectivity and balancedness of cellular automata over groups</title><author>Capobianco, Silvio ; Kari, Jarkko ; Taati, Siamak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d249t-c97e361ff4ba64b9358255100676c5c24e8142fb863cac09234dd141bf96300e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>37b15, 68q80, 37b10</topic><topic>Asymptotic properties</topic><topic>Cellular automata</topic><topic>Cellular biology</topic><topic>Configurations</topic><topic>mathematics - dynamical systems</topic><topic>nonlinear sciences - cellular automata and lattice gases</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capobianco, Silvio</creatorcontrib><creatorcontrib>Kari, Jarkko</creatorcontrib><creatorcontrib>Taati, Siamak</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Discrete mathematics and theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capobianco, Silvio</au><au>Kari, Jarkko</au><au>Taati, Siamak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-surjectivity and balancedness of cellular automata over groups</atitle><jtitle>Discrete mathematics and theoretical computer science</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>19</volume><issue>3</issue><eissn>1365-8050</eissn><abstract>We discuss cellular automata over arbitrary finitely generated groups. Wecall a cellular automaton post-surjective if for any pair of asymptoticconfigurations, every pre-image of one is asymptotic to a pre-image of theother. The well known dual concept is pre-injectivity: a cellular automaton ispre-injective if distinct asymptotic configurations have distinct images. Weprove that pre-injective, post-surjective cellular automata are reversible.Moreover, on sofic groups, post-surjectivity alone implies reversibility. Wealso prove that reversible cellular automata over arbitrary groups arebalanced, that is, they preserve the uniform measure on the configurationspace.</abstract><cop>Nancy</cop><pub>DMTCS</pub><doi>10.23638/DMTCS-19-3-4</doi><orcidid>https://orcid.org/0000-0003-0670-6138</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1365-8050 |
ispartof | Discrete mathematics and theoretical computer science, 2017-01, Vol.19 (3) |
issn | 1365-8050 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5994c11558f84462b2ef32bb7d48e21d |
source | Publicly Available Content Database |
subjects | 37b15, 68q80, 37b10 Asymptotic properties Cellular automata Cellular biology Configurations mathematics - dynamical systems nonlinear sciences - cellular automata and lattice gases Simulation |
title | Post-surjectivity and balancedness of cellular automata over groups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-surjectivity%20and%20balancedness%20of%20cellular%20automata%20over%20groups&rft.jtitle=Discrete%20mathematics%20and%20theoretical%20computer%20science&rft.au=Capobianco,%20Silvio&rft.date=2017-01-01&rft.volume=19&rft.issue=3&rft.eissn=1365-8050&rft_id=info:doi/10.23638/DMTCS-19-3-4&rft_dat=%3Cproquest_doaj_%3E1967042045%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d249t-c97e361ff4ba64b9358255100676c5c24e8142fb863cac09234dd141bf96300e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1967042045&rft_id=info:pmid/&rfr_iscdi=true |