Loading…
Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants
Global warming severely affects flowering time and reproductive success of plants. Alternative splicing of pre-messenger RNA (mRNA) is an important mechanism underlying ambient temperature-controlled responses in plants, yet its regulation is poorly understood. An increase in temperature promotes ch...
Saved in:
Published in: | Genome Biology 2017-06, Vol.18 (1), p.102-102, Article 102 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c745t-4c015ca341df42371a804de2bfac6e5fd8b6daf141771d0cdef4db9e9e8abcec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c745t-4c015ca341df42371a804de2bfac6e5fd8b6daf141771d0cdef4db9e9e8abcec3 |
container_end_page | 102 |
container_issue | 1 |
container_start_page | 102 |
container_title | Genome Biology |
container_volume | 18 |
creator | Pajoro, A Severing, E Angenent, G C Immink, R G H |
description | Global warming severely affects flowering time and reproductive success of plants. Alternative splicing of pre-messenger RNA (mRNA) is an important mechanism underlying ambient temperature-controlled responses in plants, yet its regulation is poorly understood. An increase in temperature promotes changes in plant morphology as well as the transition from the vegetative to the reproductive phase in Arabidopsis thaliana via changes in splicing of key regulatory genes. Here we investigate whether a particular histone modification affects ambient temperature-induced alternative splicing and flowering time.
We use a genome-wide approach and perform RNA-sequencing (RNA-seq) analyses and histone H3 lysine 36 tri-methylation (H3K36me3) chromatin immunoprecipitation sequencing (ChIP-seq) in plants exposed to different ambient temperatures. Analysis and comparison of these datasets reveal that temperature-induced differentially spliced genes are enriched in H3K36me3. Moreover, we find that reduction of H3K36me3 deposition causes alteration in temperature-induced alternative splicing. We also show that plants with mutations in H3K36me3 writers, eraser, or readers have altered high ambient temperature-induced flowering.
Our results show a key role for the histone mark H3K36me3 in splicing regulation and plant plasticity to fluctuating ambient temperature. Our findings open new perspectives for the breeding of crops that can better cope with environmental changes due to climate change. |
doi_str_mv | 10.1186/s13059-017-1235-x |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_59aa9bc77dd147c89d0e374b82249eee</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_59aa9bc77dd147c89d0e374b82249eee</doaj_id><sourcerecordid>1904908229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c745t-4c015ca341df42371a804de2bfac6e5fd8b6daf141771d0cdef4db9e9e8abcec3</originalsourceid><addsrcrecordid>eNpdUlFrFDEQXkSx9fQH-CILvviymmSzm40PQinqFQq-KPgWZpPZa45ccibZtvfvzfZqaYXATCbf9zEz-arqLSUfKR36T4m2pJMNoaKhrO2a22fVKeWCN6Inv58_yk-qVyltCaGSs_5ldcKGru_JIE8ru7YpB4_1uq3dIdmStX29w3x1cJBt8DVME-qc6oy7PUbIc8TGejNrNDW4jNEX3DXWae-stn5Tgzf15MINxuVmfb134HN6Xb2YwCV8cx9X1a9vX3-er5vLH98vzs8uGy14lxuuCe00tJyaibNWUBgIN8jGCXSP3WSGsTcwUU6FoIZogxM3o0SJA4wadbuqLo66JsBW7aPdQTyoAFbdFULcKIjZaoeqkwBy1EIYU1alB2kItoKPA2NcImLR-nzUuoEN-jIOeuUhapvuBJ0d4yJ-M0fl3RL285hUx1pGaCF_OZJLcYdGo88R3JOOnr54e6U24Vp1vCiUs6o-3AvE8GfGlNXOJo2urBPDnBSVhEtSmpUF-v4_6DbM5WdcUowRIYeODwuKHlE6hpQiTg_NUKIWR6mjo1RxlFocpW4L593jKR4Y_yzU_gVD58xe</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207985489</pqid></control><display><type>article</type><title>Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Pajoro, A ; Severing, E ; Angenent, G C ; Immink, R G H</creator><creatorcontrib>Pajoro, A ; Severing, E ; Angenent, G C ; Immink, R G H</creatorcontrib><description>Global warming severely affects flowering time and reproductive success of plants. Alternative splicing of pre-messenger RNA (mRNA) is an important mechanism underlying ambient temperature-controlled responses in plants, yet its regulation is poorly understood. An increase in temperature promotes changes in plant morphology as well as the transition from the vegetative to the reproductive phase in Arabidopsis thaliana via changes in splicing of key regulatory genes. Here we investigate whether a particular histone modification affects ambient temperature-induced alternative splicing and flowering time.
We use a genome-wide approach and perform RNA-sequencing (RNA-seq) analyses and histone H3 lysine 36 tri-methylation (H3K36me3) chromatin immunoprecipitation sequencing (ChIP-seq) in plants exposed to different ambient temperatures. Analysis and comparison of these datasets reveal that temperature-induced differentially spliced genes are enriched in H3K36me3. Moreover, we find that reduction of H3K36me3 deposition causes alteration in temperature-induced alternative splicing. We also show that plants with mutations in H3K36me3 writers, eraser, or readers have altered high ambient temperature-induced flowering.
Our results show a key role for the histone mark H3K36me3 in splicing regulation and plant plasticity to fluctuating ambient temperature. Our findings open new perspectives for the breeding of crops that can better cope with environmental changes due to climate change.</description><identifier>ISSN: 1474-760X</identifier><identifier>ISSN: 1474-7596</identifier><identifier>EISSN: 1474-760X</identifier><identifier>DOI: 10.1186/s13059-017-1235-x</identifier><identifier>PMID: 28566089</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Alternative splicing ; Alternative Splicing - genetics ; Ambient temperature ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Bioinformatics ; Breeding success ; Chromatin ; Circadian rhythm ; Climate change ; DNA Methylation - genetics ; Environmental changes ; Flowering ; Flowering time ; Flowers - genetics ; Flowers - growth & development ; Gene Expression Regulation, Plant ; Genes ; Genomes ; Global warming ; H3K36me3 ; Histone H3 ; Histone modification ; Histone-Lysine N-Methyltransferase - genetics ; Immunoprecipitation ; Lysine ; MADS Domain Proteins - genetics ; mRNA ; Mutation - genetics ; Ontology ; Plant breeding ; Proteins ; Regulation ; RNA polymerase ; RNA Splicing - genetics ; SDG8 ; Temperature ; Temperature effects ; Transcription Factors - genetics</subject><ispartof>Genome Biology, 2017-06, Vol.18 (1), p.102-102, Article 102</ispartof><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s). 2017</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c745t-4c015ca341df42371a804de2bfac6e5fd8b6daf141771d0cdef4db9e9e8abcec3</citedby><cites>FETCH-LOGICAL-c745t-4c015ca341df42371a804de2bfac6e5fd8b6daf141771d0cdef4db9e9e8abcec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5452352/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2207985489?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28566089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pajoro, A</creatorcontrib><creatorcontrib>Severing, E</creatorcontrib><creatorcontrib>Angenent, G C</creatorcontrib><creatorcontrib>Immink, R G H</creatorcontrib><title>Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants</title><title>Genome Biology</title><addtitle>Genome Biol</addtitle><description>Global warming severely affects flowering time and reproductive success of plants. Alternative splicing of pre-messenger RNA (mRNA) is an important mechanism underlying ambient temperature-controlled responses in plants, yet its regulation is poorly understood. An increase in temperature promotes changes in plant morphology as well as the transition from the vegetative to the reproductive phase in Arabidopsis thaliana via changes in splicing of key regulatory genes. Here we investigate whether a particular histone modification affects ambient temperature-induced alternative splicing and flowering time.
We use a genome-wide approach and perform RNA-sequencing (RNA-seq) analyses and histone H3 lysine 36 tri-methylation (H3K36me3) chromatin immunoprecipitation sequencing (ChIP-seq) in plants exposed to different ambient temperatures. Analysis and comparison of these datasets reveal that temperature-induced differentially spliced genes are enriched in H3K36me3. Moreover, we find that reduction of H3K36me3 deposition causes alteration in temperature-induced alternative splicing. We also show that plants with mutations in H3K36me3 writers, eraser, or readers have altered high ambient temperature-induced flowering.
Our results show a key role for the histone mark H3K36me3 in splicing regulation and plant plasticity to fluctuating ambient temperature. Our findings open new perspectives for the breeding of crops that can better cope with environmental changes due to climate change.</description><subject>Alternative splicing</subject><subject>Alternative Splicing - genetics</subject><subject>Ambient temperature</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Bioinformatics</subject><subject>Breeding success</subject><subject>Chromatin</subject><subject>Circadian rhythm</subject><subject>Climate change</subject><subject>DNA Methylation - genetics</subject><subject>Environmental changes</subject><subject>Flowering</subject><subject>Flowering time</subject><subject>Flowers - genetics</subject><subject>Flowers - growth & development</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genomes</subject><subject>Global warming</subject><subject>H3K36me3</subject><subject>Histone H3</subject><subject>Histone modification</subject><subject>Histone-Lysine N-Methyltransferase - genetics</subject><subject>Immunoprecipitation</subject><subject>Lysine</subject><subject>MADS Domain Proteins - genetics</subject><subject>mRNA</subject><subject>Mutation - genetics</subject><subject>Ontology</subject><subject>Plant breeding</subject><subject>Proteins</subject><subject>Regulation</subject><subject>RNA polymerase</subject><subject>RNA Splicing - genetics</subject><subject>SDG8</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Transcription Factors - genetics</subject><issn>1474-760X</issn><issn>1474-7596</issn><issn>1474-760X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUlFrFDEQXkSx9fQH-CILvviymmSzm40PQinqFQq-KPgWZpPZa45ccibZtvfvzfZqaYXATCbf9zEz-arqLSUfKR36T4m2pJMNoaKhrO2a22fVKeWCN6Inv58_yk-qVyltCaGSs_5ldcKGru_JIE8ru7YpB4_1uq3dIdmStX29w3x1cJBt8DVME-qc6oy7PUbIc8TGejNrNDW4jNEX3DXWae-stn5Tgzf15MINxuVmfb134HN6Xb2YwCV8cx9X1a9vX3-er5vLH98vzs8uGy14lxuuCe00tJyaibNWUBgIN8jGCXSP3WSGsTcwUU6FoIZogxM3o0SJA4wadbuqLo66JsBW7aPdQTyoAFbdFULcKIjZaoeqkwBy1EIYU1alB2kItoKPA2NcImLR-nzUuoEN-jIOeuUhapvuBJ0d4yJ-M0fl3RL285hUx1pGaCF_OZJLcYdGo88R3JOOnr54e6U24Vp1vCiUs6o-3AvE8GfGlNXOJo2urBPDnBSVhEtSmpUF-v4_6DbM5WdcUowRIYeODwuKHlE6hpQiTg_NUKIWR6mjo1RxlFocpW4L593jKR4Y_yzU_gVD58xe</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Pajoro, A</creator><creator>Severing, E</creator><creator>Angenent, G C</creator><creator>Immink, R G H</creator><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>QVL</scope><scope>DOA</scope></search><sort><creationdate>20170601</creationdate><title>Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants</title><author>Pajoro, A ; Severing, E ; Angenent, G C ; Immink, R G H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c745t-4c015ca341df42371a804de2bfac6e5fd8b6daf141771d0cdef4db9e9e8abcec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alternative splicing</topic><topic>Alternative Splicing - genetics</topic><topic>Ambient temperature</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Bioinformatics</topic><topic>Breeding success</topic><topic>Chromatin</topic><topic>Circadian rhythm</topic><topic>Climate change</topic><topic>DNA Methylation - genetics</topic><topic>Environmental changes</topic><topic>Flowering</topic><topic>Flowering time</topic><topic>Flowers - genetics</topic><topic>Flowers - growth & development</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genomes</topic><topic>Global warming</topic><topic>H3K36me3</topic><topic>Histone H3</topic><topic>Histone modification</topic><topic>Histone-Lysine N-Methyltransferase - genetics</topic><topic>Immunoprecipitation</topic><topic>Lysine</topic><topic>MADS Domain Proteins - genetics</topic><topic>mRNA</topic><topic>Mutation - genetics</topic><topic>Ontology</topic><topic>Plant breeding</topic><topic>Proteins</topic><topic>Regulation</topic><topic>RNA polymerase</topic><topic>RNA Splicing - genetics</topic><topic>SDG8</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pajoro, A</creatorcontrib><creatorcontrib>Severing, E</creatorcontrib><creatorcontrib>Angenent, G C</creatorcontrib><creatorcontrib>Immink, R G H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Genome Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pajoro, A</au><au>Severing, E</au><au>Angenent, G C</au><au>Immink, R G H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants</atitle><jtitle>Genome Biology</jtitle><addtitle>Genome Biol</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>18</volume><issue>1</issue><spage>102</spage><epage>102</epage><pages>102-102</pages><artnum>102</artnum><issn>1474-760X</issn><issn>1474-7596</issn><eissn>1474-760X</eissn><abstract>Global warming severely affects flowering time and reproductive success of plants. Alternative splicing of pre-messenger RNA (mRNA) is an important mechanism underlying ambient temperature-controlled responses in plants, yet its regulation is poorly understood. An increase in temperature promotes changes in plant morphology as well as the transition from the vegetative to the reproductive phase in Arabidopsis thaliana via changes in splicing of key regulatory genes. Here we investigate whether a particular histone modification affects ambient temperature-induced alternative splicing and flowering time.
We use a genome-wide approach and perform RNA-sequencing (RNA-seq) analyses and histone H3 lysine 36 tri-methylation (H3K36me3) chromatin immunoprecipitation sequencing (ChIP-seq) in plants exposed to different ambient temperatures. Analysis and comparison of these datasets reveal that temperature-induced differentially spliced genes are enriched in H3K36me3. Moreover, we find that reduction of H3K36me3 deposition causes alteration in temperature-induced alternative splicing. We also show that plants with mutations in H3K36me3 writers, eraser, or readers have altered high ambient temperature-induced flowering.
Our results show a key role for the histone mark H3K36me3 in splicing regulation and plant plasticity to fluctuating ambient temperature. Our findings open new perspectives for the breeding of crops that can better cope with environmental changes due to climate change.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>28566089</pmid><doi>10.1186/s13059-017-1235-x</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1474-760X |
ispartof | Genome Biology, 2017-06, Vol.18 (1), p.102-102, Article 102 |
issn | 1474-760X 1474-7596 1474-760X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_59aa9bc77dd147c89d0e374b82249eee |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Alternative splicing Alternative Splicing - genetics Ambient temperature Arabidopsis Arabidopsis - genetics Arabidopsis - growth & development Bioinformatics Breeding success Chromatin Circadian rhythm Climate change DNA Methylation - genetics Environmental changes Flowering Flowering time Flowers - genetics Flowers - growth & development Gene Expression Regulation, Plant Genes Genomes Global warming H3K36me3 Histone H3 Histone modification Histone-Lysine N-Methyltransferase - genetics Immunoprecipitation Lysine MADS Domain Proteins - genetics mRNA Mutation - genetics Ontology Plant breeding Proteins Regulation RNA polymerase RNA Splicing - genetics SDG8 Temperature Temperature effects Transcription Factors - genetics |
title | Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Histone%20H3%20lysine%2036%20methylation%20affects%20temperature-induced%20alternative%20splicing%20and%20flowering%20in%20plants&rft.jtitle=Genome%20Biology&rft.au=Pajoro,%20A&rft.date=2017-06-01&rft.volume=18&rft.issue=1&rft.spage=102&rft.epage=102&rft.pages=102-102&rft.artnum=102&rft.issn=1474-760X&rft.eissn=1474-760X&rft_id=info:doi/10.1186/s13059-017-1235-x&rft_dat=%3Cproquest_doaj_%3E1904908229%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c745t-4c015ca341df42371a804de2bfac6e5fd8b6daf141771d0cdef4db9e9e8abcec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2207985489&rft_id=info:pmid/28566089&rfr_iscdi=true |