Loading…

Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants

Global warming severely affects flowering time and reproductive success of plants. Alternative splicing of pre-messenger RNA (mRNA) is an important mechanism underlying ambient temperature-controlled responses in plants, yet its regulation is poorly understood. An increase in temperature promotes ch...

Full description

Saved in:
Bibliographic Details
Published in:Genome Biology 2017-06, Vol.18 (1), p.102-102, Article 102
Main Authors: Pajoro, A, Severing, E, Angenent, G C, Immink, R G H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c745t-4c015ca341df42371a804de2bfac6e5fd8b6daf141771d0cdef4db9e9e8abcec3
cites cdi_FETCH-LOGICAL-c745t-4c015ca341df42371a804de2bfac6e5fd8b6daf141771d0cdef4db9e9e8abcec3
container_end_page 102
container_issue 1
container_start_page 102
container_title Genome Biology
container_volume 18
creator Pajoro, A
Severing, E
Angenent, G C
Immink, R G H
description Global warming severely affects flowering time and reproductive success of plants. Alternative splicing of pre-messenger RNA (mRNA) is an important mechanism underlying ambient temperature-controlled responses in plants, yet its regulation is poorly understood. An increase in temperature promotes changes in plant morphology as well as the transition from the vegetative to the reproductive phase in Arabidopsis thaliana via changes in splicing of key regulatory genes. Here we investigate whether a particular histone modification affects ambient temperature-induced alternative splicing and flowering time. We use a genome-wide approach and perform RNA-sequencing (RNA-seq) analyses and histone H3 lysine 36 tri-methylation (H3K36me3) chromatin immunoprecipitation sequencing (ChIP-seq) in plants exposed to different ambient temperatures. Analysis and comparison of these datasets reveal that temperature-induced differentially spliced genes are enriched in H3K36me3. Moreover, we find that reduction of H3K36me3 deposition causes alteration in temperature-induced alternative splicing. We also show that plants with mutations in H3K36me3 writers, eraser, or readers have altered high ambient temperature-induced flowering. Our results show a key role for the histone mark H3K36me3 in splicing regulation and plant plasticity to fluctuating ambient temperature. Our findings open new perspectives for the breeding of crops that can better cope with environmental changes due to climate change.
doi_str_mv 10.1186/s13059-017-1235-x
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_59aa9bc77dd147c89d0e374b82249eee</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_59aa9bc77dd147c89d0e374b82249eee</doaj_id><sourcerecordid>1904908229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c745t-4c015ca341df42371a804de2bfac6e5fd8b6daf141771d0cdef4db9e9e8abcec3</originalsourceid><addsrcrecordid>eNpdUlFrFDEQXkSx9fQH-CILvviymmSzm40PQinqFQq-KPgWZpPZa45ccibZtvfvzfZqaYXATCbf9zEz-arqLSUfKR36T4m2pJMNoaKhrO2a22fVKeWCN6Inv58_yk-qVyltCaGSs_5ldcKGru_JIE8ru7YpB4_1uq3dIdmStX29w3x1cJBt8DVME-qc6oy7PUbIc8TGejNrNDW4jNEX3DXWae-stn5Tgzf15MINxuVmfb134HN6Xb2YwCV8cx9X1a9vX3-er5vLH98vzs8uGy14lxuuCe00tJyaibNWUBgIN8jGCXSP3WSGsTcwUU6FoIZogxM3o0SJA4wadbuqLo66JsBW7aPdQTyoAFbdFULcKIjZaoeqkwBy1EIYU1alB2kItoKPA2NcImLR-nzUuoEN-jIOeuUhapvuBJ0d4yJ-M0fl3RL285hUx1pGaCF_OZJLcYdGo88R3JOOnr54e6U24Vp1vCiUs6o-3AvE8GfGlNXOJo2urBPDnBSVhEtSmpUF-v4_6DbM5WdcUowRIYeODwuKHlE6hpQiTg_NUKIWR6mjo1RxlFocpW4L593jKR4Y_yzU_gVD58xe</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207985489</pqid></control><display><type>article</type><title>Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Pajoro, A ; Severing, E ; Angenent, G C ; Immink, R G H</creator><creatorcontrib>Pajoro, A ; Severing, E ; Angenent, G C ; Immink, R G H</creatorcontrib><description>Global warming severely affects flowering time and reproductive success of plants. Alternative splicing of pre-messenger RNA (mRNA) is an important mechanism underlying ambient temperature-controlled responses in plants, yet its regulation is poorly understood. An increase in temperature promotes changes in plant morphology as well as the transition from the vegetative to the reproductive phase in Arabidopsis thaliana via changes in splicing of key regulatory genes. Here we investigate whether a particular histone modification affects ambient temperature-induced alternative splicing and flowering time. We use a genome-wide approach and perform RNA-sequencing (RNA-seq) analyses and histone H3 lysine 36 tri-methylation (H3K36me3) chromatin immunoprecipitation sequencing (ChIP-seq) in plants exposed to different ambient temperatures. Analysis and comparison of these datasets reveal that temperature-induced differentially spliced genes are enriched in H3K36me3. Moreover, we find that reduction of H3K36me3 deposition causes alteration in temperature-induced alternative splicing. We also show that plants with mutations in H3K36me3 writers, eraser, or readers have altered high ambient temperature-induced flowering. Our results show a key role for the histone mark H3K36me3 in splicing regulation and plant plasticity to fluctuating ambient temperature. Our findings open new perspectives for the breeding of crops that can better cope with environmental changes due to climate change.</description><identifier>ISSN: 1474-760X</identifier><identifier>ISSN: 1474-7596</identifier><identifier>EISSN: 1474-760X</identifier><identifier>DOI: 10.1186/s13059-017-1235-x</identifier><identifier>PMID: 28566089</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Alternative splicing ; Alternative Splicing - genetics ; Ambient temperature ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Bioinformatics ; Breeding success ; Chromatin ; Circadian rhythm ; Climate change ; DNA Methylation - genetics ; Environmental changes ; Flowering ; Flowering time ; Flowers - genetics ; Flowers - growth &amp; development ; Gene Expression Regulation, Plant ; Genes ; Genomes ; Global warming ; H3K36me3 ; Histone H3 ; Histone modification ; Histone-Lysine N-Methyltransferase - genetics ; Immunoprecipitation ; Lysine ; MADS Domain Proteins - genetics ; mRNA ; Mutation - genetics ; Ontology ; Plant breeding ; Proteins ; Regulation ; RNA polymerase ; RNA Splicing - genetics ; SDG8 ; Temperature ; Temperature effects ; Transcription Factors - genetics</subject><ispartof>Genome Biology, 2017-06, Vol.18 (1), p.102-102, Article 102</ispartof><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s). 2017</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c745t-4c015ca341df42371a804de2bfac6e5fd8b6daf141771d0cdef4db9e9e8abcec3</citedby><cites>FETCH-LOGICAL-c745t-4c015ca341df42371a804de2bfac6e5fd8b6daf141771d0cdef4db9e9e8abcec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5452352/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2207985489?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28566089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pajoro, A</creatorcontrib><creatorcontrib>Severing, E</creatorcontrib><creatorcontrib>Angenent, G C</creatorcontrib><creatorcontrib>Immink, R G H</creatorcontrib><title>Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants</title><title>Genome Biology</title><addtitle>Genome Biol</addtitle><description>Global warming severely affects flowering time and reproductive success of plants. Alternative splicing of pre-messenger RNA (mRNA) is an important mechanism underlying ambient temperature-controlled responses in plants, yet its regulation is poorly understood. An increase in temperature promotes changes in plant morphology as well as the transition from the vegetative to the reproductive phase in Arabidopsis thaliana via changes in splicing of key regulatory genes. Here we investigate whether a particular histone modification affects ambient temperature-induced alternative splicing and flowering time. We use a genome-wide approach and perform RNA-sequencing (RNA-seq) analyses and histone H3 lysine 36 tri-methylation (H3K36me3) chromatin immunoprecipitation sequencing (ChIP-seq) in plants exposed to different ambient temperatures. Analysis and comparison of these datasets reveal that temperature-induced differentially spliced genes are enriched in H3K36me3. Moreover, we find that reduction of H3K36me3 deposition causes alteration in temperature-induced alternative splicing. We also show that plants with mutations in H3K36me3 writers, eraser, or readers have altered high ambient temperature-induced flowering. Our results show a key role for the histone mark H3K36me3 in splicing regulation and plant plasticity to fluctuating ambient temperature. Our findings open new perspectives for the breeding of crops that can better cope with environmental changes due to climate change.</description><subject>Alternative splicing</subject><subject>Alternative Splicing - genetics</subject><subject>Ambient temperature</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Bioinformatics</subject><subject>Breeding success</subject><subject>Chromatin</subject><subject>Circadian rhythm</subject><subject>Climate change</subject><subject>DNA Methylation - genetics</subject><subject>Environmental changes</subject><subject>Flowering</subject><subject>Flowering time</subject><subject>Flowers - genetics</subject><subject>Flowers - growth &amp; development</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genomes</subject><subject>Global warming</subject><subject>H3K36me3</subject><subject>Histone H3</subject><subject>Histone modification</subject><subject>Histone-Lysine N-Methyltransferase - genetics</subject><subject>Immunoprecipitation</subject><subject>Lysine</subject><subject>MADS Domain Proteins - genetics</subject><subject>mRNA</subject><subject>Mutation - genetics</subject><subject>Ontology</subject><subject>Plant breeding</subject><subject>Proteins</subject><subject>Regulation</subject><subject>RNA polymerase</subject><subject>RNA Splicing - genetics</subject><subject>SDG8</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Transcription Factors - genetics</subject><issn>1474-760X</issn><issn>1474-7596</issn><issn>1474-760X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUlFrFDEQXkSx9fQH-CILvviymmSzm40PQinqFQq-KPgWZpPZa45ccibZtvfvzfZqaYXATCbf9zEz-arqLSUfKR36T4m2pJMNoaKhrO2a22fVKeWCN6Inv58_yk-qVyltCaGSs_5ldcKGru_JIE8ru7YpB4_1uq3dIdmStX29w3x1cJBt8DVME-qc6oy7PUbIc8TGejNrNDW4jNEX3DXWae-stn5Tgzf15MINxuVmfb134HN6Xb2YwCV8cx9X1a9vX3-er5vLH98vzs8uGy14lxuuCe00tJyaibNWUBgIN8jGCXSP3WSGsTcwUU6FoIZogxM3o0SJA4wadbuqLo66JsBW7aPdQTyoAFbdFULcKIjZaoeqkwBy1EIYU1alB2kItoKPA2NcImLR-nzUuoEN-jIOeuUhapvuBJ0d4yJ-M0fl3RL285hUx1pGaCF_OZJLcYdGo88R3JOOnr54e6U24Vp1vCiUs6o-3AvE8GfGlNXOJo2urBPDnBSVhEtSmpUF-v4_6DbM5WdcUowRIYeODwuKHlE6hpQiTg_NUKIWR6mjo1RxlFocpW4L593jKR4Y_yzU_gVD58xe</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Pajoro, A</creator><creator>Severing, E</creator><creator>Angenent, G C</creator><creator>Immink, R G H</creator><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>QVL</scope><scope>DOA</scope></search><sort><creationdate>20170601</creationdate><title>Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants</title><author>Pajoro, A ; Severing, E ; Angenent, G C ; Immink, R G H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c745t-4c015ca341df42371a804de2bfac6e5fd8b6daf141771d0cdef4db9e9e8abcec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alternative splicing</topic><topic>Alternative Splicing - genetics</topic><topic>Ambient temperature</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Bioinformatics</topic><topic>Breeding success</topic><topic>Chromatin</topic><topic>Circadian rhythm</topic><topic>Climate change</topic><topic>DNA Methylation - genetics</topic><topic>Environmental changes</topic><topic>Flowering</topic><topic>Flowering time</topic><topic>Flowers - genetics</topic><topic>Flowers - growth &amp; development</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genomes</topic><topic>Global warming</topic><topic>H3K36me3</topic><topic>Histone H3</topic><topic>Histone modification</topic><topic>Histone-Lysine N-Methyltransferase - genetics</topic><topic>Immunoprecipitation</topic><topic>Lysine</topic><topic>MADS Domain Proteins - genetics</topic><topic>mRNA</topic><topic>Mutation - genetics</topic><topic>Ontology</topic><topic>Plant breeding</topic><topic>Proteins</topic><topic>Regulation</topic><topic>RNA polymerase</topic><topic>RNA Splicing - genetics</topic><topic>SDG8</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pajoro, A</creatorcontrib><creatorcontrib>Severing, E</creatorcontrib><creatorcontrib>Angenent, G C</creatorcontrib><creatorcontrib>Immink, R G H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Genome Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pajoro, A</au><au>Severing, E</au><au>Angenent, G C</au><au>Immink, R G H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants</atitle><jtitle>Genome Biology</jtitle><addtitle>Genome Biol</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>18</volume><issue>1</issue><spage>102</spage><epage>102</epage><pages>102-102</pages><artnum>102</artnum><issn>1474-760X</issn><issn>1474-7596</issn><eissn>1474-760X</eissn><abstract>Global warming severely affects flowering time and reproductive success of plants. Alternative splicing of pre-messenger RNA (mRNA) is an important mechanism underlying ambient temperature-controlled responses in plants, yet its regulation is poorly understood. An increase in temperature promotes changes in plant morphology as well as the transition from the vegetative to the reproductive phase in Arabidopsis thaliana via changes in splicing of key regulatory genes. Here we investigate whether a particular histone modification affects ambient temperature-induced alternative splicing and flowering time. We use a genome-wide approach and perform RNA-sequencing (RNA-seq) analyses and histone H3 lysine 36 tri-methylation (H3K36me3) chromatin immunoprecipitation sequencing (ChIP-seq) in plants exposed to different ambient temperatures. Analysis and comparison of these datasets reveal that temperature-induced differentially spliced genes are enriched in H3K36me3. Moreover, we find that reduction of H3K36me3 deposition causes alteration in temperature-induced alternative splicing. We also show that plants with mutations in H3K36me3 writers, eraser, or readers have altered high ambient temperature-induced flowering. Our results show a key role for the histone mark H3K36me3 in splicing regulation and plant plasticity to fluctuating ambient temperature. Our findings open new perspectives for the breeding of crops that can better cope with environmental changes due to climate change.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>28566089</pmid><doi>10.1186/s13059-017-1235-x</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-760X
ispartof Genome Biology, 2017-06, Vol.18 (1), p.102-102, Article 102
issn 1474-760X
1474-7596
1474-760X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_59aa9bc77dd147c89d0e374b82249eee
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Alternative splicing
Alternative Splicing - genetics
Ambient temperature
Arabidopsis
Arabidopsis - genetics
Arabidopsis - growth & development
Bioinformatics
Breeding success
Chromatin
Circadian rhythm
Climate change
DNA Methylation - genetics
Environmental changes
Flowering
Flowering time
Flowers - genetics
Flowers - growth & development
Gene Expression Regulation, Plant
Genes
Genomes
Global warming
H3K36me3
Histone H3
Histone modification
Histone-Lysine N-Methyltransferase - genetics
Immunoprecipitation
Lysine
MADS Domain Proteins - genetics
mRNA
Mutation - genetics
Ontology
Plant breeding
Proteins
Regulation
RNA polymerase
RNA Splicing - genetics
SDG8
Temperature
Temperature effects
Transcription Factors - genetics
title Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Histone%20H3%20lysine%2036%20methylation%20affects%20temperature-induced%20alternative%20splicing%20and%20flowering%20in%20plants&rft.jtitle=Genome%20Biology&rft.au=Pajoro,%20A&rft.date=2017-06-01&rft.volume=18&rft.issue=1&rft.spage=102&rft.epage=102&rft.pages=102-102&rft.artnum=102&rft.issn=1474-760X&rft.eissn=1474-760X&rft_id=info:doi/10.1186/s13059-017-1235-x&rft_dat=%3Cproquest_doaj_%3E1904908229%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c745t-4c015ca341df42371a804de2bfac6e5fd8b6daf141771d0cdef4db9e9e8abcec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2207985489&rft_id=info:pmid/28566089&rfr_iscdi=true