Loading…
Turning Biodiesel Waste Glycerol into 1,3-Propanediol: Catalytic Performance of Sulphuric acid-Activated Montmorillonite Supported Platinum Catalysts in Glycerol Hydrogenolysis
Direct C-O hydrogenolysis of bioglycerine to produce 1,3-propanediol selectively is a vital technology that can expand the scope of biodiesel industry and green chemical production from biomass. Herein we report sulphuric acid-activated montmorillonite clay supported platinum nanoparticles as highly...
Saved in:
Published in: | Scientific reports 2018-05, Vol.8 (1), p.7484-12, Article 7484 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Direct C-O hydrogenolysis of bioglycerine to produce 1,3-propanediol selectively is a vital technology that can expand the scope of biodiesel industry and green chemical production from biomass. Herein we report sulphuric acid-activated montmorillonite clay supported platinum nanoparticles as highly effective solid acid catalysts for the selective production of 1,3-propanediol from glycerol. The catalytic performances of the catalysts were investigated in the hydrogenolysis of glycerol with a fixed bed reactor under ambient pressure. The results were found promising and showed that the activation of montmorillonite by sulphuric acid incorporated Brønsted acidity in the catalyst and significantly improved the selectivity to 1,3-propanediol. The catalytic performance of different platinum loaded catalysts was examined and 2 wt% Pt/S-MMT catalyst presented superior activity among others validating 62% 1,3-propanediol selectivity at 94% glycerol conversion. The catalytic activity of 2Pt/S-MMT was systematically investigated under varying reaction parameters including reaction temperature, hydrogen flow rate, glycerol concentration, weight hourly space velocity, and contact time to derive the optimum conditions for the reaction. The catalyst stability, reusability and structure-activity correlation were also elucidated. The high performance of the catalyst could be ascribed to well disperse Pt nanoparticles immobilized on acid-activated montmorillonite, wider pore-structure and appropriate acid sites of the catalyst. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-25787-w |