Loading…
Experimental Procedure for the Determination of the Critical Coalescence Concentration (CCC) of Simple Frothers
In this study, the critical coalescence concentrations (CCC) of selected commercial frother solutions, namely polypropylene glycols (PPG 200, 400, and 600), tri propylene glycol (BTPG), triethylene glycol (BTEG), dipropylene glycol (BDPG), and as a reference, methyl isobutyl carbinol (MIBC), were de...
Saved in:
Published in: | Minerals (Basel) 2020-07, Vol.10 (7), p.617 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-ea2ff49d5f3f72c5904b046ee03ff094e374d683a232dec3d63843b005b0288f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-ea2ff49d5f3f72c5904b046ee03ff094e374d683a232dec3d63843b005b0288f3 |
container_end_page | |
container_issue | 7 |
container_start_page | 617 |
container_title | Minerals (Basel) |
container_volume | 10 |
creator | Guven, Onur Batjargal, Khandjamts Ozdemir, Orhan Karakashev, Stoyan I. Grozev, Nikolay A. Boylu, Feridun Çelik, Mehmet Sabri |
description | In this study, the critical coalescence concentrations (CCC) of selected commercial frother solutions, namely polypropylene glycols (PPG 200, 400, and 600), tri propylene glycol (BTPG), triethylene glycol (BTEG), dipropylene glycol (BDPG), and as a reference, methyl isobutyl carbinol (MIBC), were determined using a bubble column based on light absorption. The results for all seven frothers showed that BTEG has the worst bubble inhibiting performance, and PPG 600 has the best bubble inhibiting performance. While critical coalescence concentration (CCC) was found as 3 ppm for PPG 600, it increased to 25 ppm for BTEG. In the case of MIBC, which was the reference point, the CCC value was found as 10 ppm, which was consistent with the literature. The surface tension isotherms of the frothers were determined and analyzed with one of the latest adsorption models. The results indicated that the polypropylene glycol frothers showed more surface activity compared to alcohol or other frothers investigated. This is due to the additional reorganization of the PPG molecules on the air/water interface, thus boosting its surface activity. |
doi_str_mv | 10.3390/min10070617 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_59d638e85dad40359b3fd37b8c552065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_59d638e85dad40359b3fd37b8c552065</doaj_id><sourcerecordid>2423660218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-ea2ff49d5f3f72c5904b046ee03ff094e374d683a232dec3d63843b005b0288f3</originalsourceid><addsrcrecordid>eNpNkVFLwzAQx4soOOae_AIFXxSZXnNJ2j5K3VQYKKjgW0iTi3Z0zUw70G9v5kSWh8vx53f_u-OS5DSDK8QSrldNlwHkILP8IBkxyMU0k_h2uJcfJ5O-X0J8ZYaFYKPEz77WFJoVdYNu06fgDdlNoNT5kA4flN7SQCE666HxXerdr1iFZmhM5CuvW-oNdSaKPsZuCDvyvKqqiy3_3KzWLaXz4GNl6E-SI6fbniZ__zh5nc9eqvvp4vHuobpZTA1KPkxJM-d4aYVDlzMjSuA1cEkE6ByUnDDnVhaoGTJLBq3EgmMNIGpgReFwnDzsfK3XS7WOG-rwrbxu1K_gw7vSIS7RkhLltpoKYbXlgKKs0VnM68IIwUCK6HW281oH_7mhflBLvwldHF8xzlBKYFkRqcsdZYLv-0Duv2sGansgtXcg_AF-VYJz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423660218</pqid></control><display><type>article</type><title>Experimental Procedure for the Determination of the Critical Coalescence Concentration (CCC) of Simple Frothers</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>ABI/INFORM Global (ProQuest)</source><creator>Guven, Onur ; Batjargal, Khandjamts ; Ozdemir, Orhan ; Karakashev, Stoyan I. ; Grozev, Nikolay A. ; Boylu, Feridun ; Çelik, Mehmet Sabri</creator><creatorcontrib>Guven, Onur ; Batjargal, Khandjamts ; Ozdemir, Orhan ; Karakashev, Stoyan I. ; Grozev, Nikolay A. ; Boylu, Feridun ; Çelik, Mehmet Sabri</creatorcontrib><description>In this study, the critical coalescence concentrations (CCC) of selected commercial frother solutions, namely polypropylene glycols (PPG 200, 400, and 600), tri propylene glycol (BTPG), triethylene glycol (BTEG), dipropylene glycol (BDPG), and as a reference, methyl isobutyl carbinol (MIBC), were determined using a bubble column based on light absorption. The results for all seven frothers showed that BTEG has the worst bubble inhibiting performance, and PPG 600 has the best bubble inhibiting performance. While critical coalescence concentration (CCC) was found as 3 ppm for PPG 600, it increased to 25 ppm for BTEG. In the case of MIBC, which was the reference point, the CCC value was found as 10 ppm, which was consistent with the literature. The surface tension isotherms of the frothers were determined and analyzed with one of the latest adsorption models. The results indicated that the polypropylene glycol frothers showed more surface activity compared to alcohol or other frothers investigated. This is due to the additional reorganization of the PPG molecules on the air/water interface, thus boosting its surface activity.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min10070617</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air-water interface ; Alcohols ; Aqueous solutions ; bubble coalescence ; Bubbles ; CCC ; Coalescence ; Coalescing ; critical coalescence concentration ; Electromagnetic absorption ; frothers ; Light ; Light absorption ; Methods ; Methyl isobutyl carbinol ; Polypropylene ; Polypropylene glycol ; Propylene ; Propylene glycol ; Studies ; Surface activity ; Surface tension ; Triethylene glycol</subject><ispartof>Minerals (Basel), 2020-07, Vol.10 (7), p.617</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-ea2ff49d5f3f72c5904b046ee03ff094e374d683a232dec3d63843b005b0288f3</citedby><cites>FETCH-LOGICAL-c364t-ea2ff49d5f3f72c5904b046ee03ff094e374d683a232dec3d63843b005b0288f3</cites><orcidid>0000-0003-2921-6596 ; 0000-0002-3826-2853 ; 0000-0002-4408-546X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2423660218/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2423660218?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,25753,27924,27925,36060,37012,44363,44590,74895,75126</link.rule.ids></links><search><creatorcontrib>Guven, Onur</creatorcontrib><creatorcontrib>Batjargal, Khandjamts</creatorcontrib><creatorcontrib>Ozdemir, Orhan</creatorcontrib><creatorcontrib>Karakashev, Stoyan I.</creatorcontrib><creatorcontrib>Grozev, Nikolay A.</creatorcontrib><creatorcontrib>Boylu, Feridun</creatorcontrib><creatorcontrib>Çelik, Mehmet Sabri</creatorcontrib><title>Experimental Procedure for the Determination of the Critical Coalescence Concentration (CCC) of Simple Frothers</title><title>Minerals (Basel)</title><description>In this study, the critical coalescence concentrations (CCC) of selected commercial frother solutions, namely polypropylene glycols (PPG 200, 400, and 600), tri propylene glycol (BTPG), triethylene glycol (BTEG), dipropylene glycol (BDPG), and as a reference, methyl isobutyl carbinol (MIBC), were determined using a bubble column based on light absorption. The results for all seven frothers showed that BTEG has the worst bubble inhibiting performance, and PPG 600 has the best bubble inhibiting performance. While critical coalescence concentration (CCC) was found as 3 ppm for PPG 600, it increased to 25 ppm for BTEG. In the case of MIBC, which was the reference point, the CCC value was found as 10 ppm, which was consistent with the literature. The surface tension isotherms of the frothers were determined and analyzed with one of the latest adsorption models. The results indicated that the polypropylene glycol frothers showed more surface activity compared to alcohol or other frothers investigated. This is due to the additional reorganization of the PPG molecules on the air/water interface, thus boosting its surface activity.</description><subject>Air-water interface</subject><subject>Alcohols</subject><subject>Aqueous solutions</subject><subject>bubble coalescence</subject><subject>Bubbles</subject><subject>CCC</subject><subject>Coalescence</subject><subject>Coalescing</subject><subject>critical coalescence concentration</subject><subject>Electromagnetic absorption</subject><subject>frothers</subject><subject>Light</subject><subject>Light absorption</subject><subject>Methods</subject><subject>Methyl isobutyl carbinol</subject><subject>Polypropylene</subject><subject>Polypropylene glycol</subject><subject>Propylene</subject><subject>Propylene glycol</subject><subject>Studies</subject><subject>Surface activity</subject><subject>Surface tension</subject><subject>Triethylene glycol</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFLwzAQx4soOOae_AIFXxSZXnNJ2j5K3VQYKKjgW0iTi3Z0zUw70G9v5kSWh8vx53f_u-OS5DSDK8QSrldNlwHkILP8IBkxyMU0k_h2uJcfJ5O-X0J8ZYaFYKPEz77WFJoVdYNu06fgDdlNoNT5kA4flN7SQCE666HxXerdr1iFZmhM5CuvW-oNdSaKPsZuCDvyvKqqiy3_3KzWLaXz4GNl6E-SI6fbniZ__zh5nc9eqvvp4vHuobpZTA1KPkxJM-d4aYVDlzMjSuA1cEkE6ByUnDDnVhaoGTJLBq3EgmMNIGpgReFwnDzsfK3XS7WOG-rwrbxu1K_gw7vSIS7RkhLltpoKYbXlgKKs0VnM68IIwUCK6HW281oH_7mhflBLvwldHF8xzlBKYFkRqcsdZYLv-0Duv2sGansgtXcg_AF-VYJz</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Guven, Onur</creator><creator>Batjargal, Khandjamts</creator><creator>Ozdemir, Orhan</creator><creator>Karakashev, Stoyan I.</creator><creator>Grozev, Nikolay A.</creator><creator>Boylu, Feridun</creator><creator>Çelik, Mehmet Sabri</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2921-6596</orcidid><orcidid>https://orcid.org/0000-0002-3826-2853</orcidid><orcidid>https://orcid.org/0000-0002-4408-546X</orcidid></search><sort><creationdate>20200701</creationdate><title>Experimental Procedure for the Determination of the Critical Coalescence Concentration (CCC) of Simple Frothers</title><author>Guven, Onur ; Batjargal, Khandjamts ; Ozdemir, Orhan ; Karakashev, Stoyan I. ; Grozev, Nikolay A. ; Boylu, Feridun ; Çelik, Mehmet Sabri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-ea2ff49d5f3f72c5904b046ee03ff094e374d683a232dec3d63843b005b0288f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air-water interface</topic><topic>Alcohols</topic><topic>Aqueous solutions</topic><topic>bubble coalescence</topic><topic>Bubbles</topic><topic>CCC</topic><topic>Coalescence</topic><topic>Coalescing</topic><topic>critical coalescence concentration</topic><topic>Electromagnetic absorption</topic><topic>frothers</topic><topic>Light</topic><topic>Light absorption</topic><topic>Methods</topic><topic>Methyl isobutyl carbinol</topic><topic>Polypropylene</topic><topic>Polypropylene glycol</topic><topic>Propylene</topic><topic>Propylene glycol</topic><topic>Studies</topic><topic>Surface activity</topic><topic>Surface tension</topic><topic>Triethylene glycol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guven, Onur</creatorcontrib><creatorcontrib>Batjargal, Khandjamts</creatorcontrib><creatorcontrib>Ozdemir, Orhan</creatorcontrib><creatorcontrib>Karakashev, Stoyan I.</creatorcontrib><creatorcontrib>Grozev, Nikolay A.</creatorcontrib><creatorcontrib>Boylu, Feridun</creatorcontrib><creatorcontrib>Çelik, Mehmet Sabri</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guven, Onur</au><au>Batjargal, Khandjamts</au><au>Ozdemir, Orhan</au><au>Karakashev, Stoyan I.</au><au>Grozev, Nikolay A.</au><au>Boylu, Feridun</au><au>Çelik, Mehmet Sabri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Procedure for the Determination of the Critical Coalescence Concentration (CCC) of Simple Frothers</atitle><jtitle>Minerals (Basel)</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>10</volume><issue>7</issue><spage>617</spage><pages>617-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>In this study, the critical coalescence concentrations (CCC) of selected commercial frother solutions, namely polypropylene glycols (PPG 200, 400, and 600), tri propylene glycol (BTPG), triethylene glycol (BTEG), dipropylene glycol (BDPG), and as a reference, methyl isobutyl carbinol (MIBC), were determined using a bubble column based on light absorption. The results for all seven frothers showed that BTEG has the worst bubble inhibiting performance, and PPG 600 has the best bubble inhibiting performance. While critical coalescence concentration (CCC) was found as 3 ppm for PPG 600, it increased to 25 ppm for BTEG. In the case of MIBC, which was the reference point, the CCC value was found as 10 ppm, which was consistent with the literature. The surface tension isotherms of the frothers were determined and analyzed with one of the latest adsorption models. The results indicated that the polypropylene glycol frothers showed more surface activity compared to alcohol or other frothers investigated. This is due to the additional reorganization of the PPG molecules on the air/water interface, thus boosting its surface activity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/min10070617</doi><orcidid>https://orcid.org/0000-0003-2921-6596</orcidid><orcidid>https://orcid.org/0000-0002-3826-2853</orcidid><orcidid>https://orcid.org/0000-0002-4408-546X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-163X |
ispartof | Minerals (Basel), 2020-07, Vol.10 (7), p.617 |
issn | 2075-163X 2075-163X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_59d638e85dad40359b3fd37b8c552065 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); ABI/INFORM Global (ProQuest) |
subjects | Air-water interface Alcohols Aqueous solutions bubble coalescence Bubbles CCC Coalescence Coalescing critical coalescence concentration Electromagnetic absorption frothers Light Light absorption Methods Methyl isobutyl carbinol Polypropylene Polypropylene glycol Propylene Propylene glycol Studies Surface activity Surface tension Triethylene glycol |
title | Experimental Procedure for the Determination of the Critical Coalescence Concentration (CCC) of Simple Frothers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Procedure%20for%20the%20Determination%20of%20the%20Critical%20Coalescence%20Concentration%20(CCC)%20of%20Simple%20Frothers&rft.jtitle=Minerals%20(Basel)&rft.au=Guven,%20Onur&rft.date=2020-07-01&rft.volume=10&rft.issue=7&rft.spage=617&rft.pages=617-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min10070617&rft_dat=%3Cproquest_doaj_%3E2423660218%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-ea2ff49d5f3f72c5904b046ee03ff094e374d683a232dec3d63843b005b0288f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2423660218&rft_id=info:pmid/&rfr_iscdi=true |