Loading…

Separation of variables and scalar products at any rank

A bstract Separation of variables (SoV) is a special property of integrable models which ensures that the wavefunction has a very simple factorised form in a specially designed basis. Even though the factorisation of the wavefunction was recently established for higher rank models by two of the auth...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2019-09, Vol.2019 (9), p.1-29, Article 52
Main Authors: Cavaglià, Andrea, Gromov, Nikolay, Levkovich-Maslyuk, Fedor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c497t-e665fd417d9c1fd364460afb1f3412a808a626f534917d9e169a613e7acd61583
cites cdi_FETCH-LOGICAL-c497t-e665fd417d9c1fd364460afb1f3412a808a626f534917d9e169a613e7acd61583
container_end_page 29
container_issue 9
container_start_page 1
container_title The journal of high energy physics
container_volume 2019
creator Cavaglià, Andrea
Gromov, Nikolay
Levkovich-Maslyuk, Fedor
description A bstract Separation of variables (SoV) is a special property of integrable models which ensures that the wavefunction has a very simple factorised form in a specially designed basis. Even though the factorisation of the wavefunction was recently established for higher rank models by two of the authors and G. Sizov, the measure for the scalar product was not known beyond the case of rank one symmetry. In this paper we show how this measure can be found, bypassing an explicit SoV construction. A key new observation is that the measure for spin chains in a highest-weight infinite dimensional representation of sl( N ) couples Q-functions at different nesting levels in a non-symmetric fashion. We also managed to express a large number of form factors as ratios of determinants in our new approach. We expect our method to be applicable in a much wider setup including the problem of computing correlators in integrable CFTs such as the fishnet theory, N = 4 SYM and the ABJM model.
doi_str_mv 10.1007/JHEP09(2019)052
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5a1a2664c97f4d88ac96a497f13c6b90</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5a1a2664c97f4d88ac96a497f13c6b90</doaj_id><sourcerecordid>2288677577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-e665fd417d9c1fd364460afb1f3412a808a626f534917d9e169a613e7acd61583</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhhdRsFbPXhe82ENtJpvNx7EUtZWCgnoO02xSt667NdkW-u9NXfHj4CnDyzMPGd4kOQdyBYSI0d30-oGoS0pADUhOD5IeEKqGkgl1-Gs-Tk5CWBECOSjSS8SjXaPHtmzqtHHpFn2Ji8qGFOsiDQYr9OnaN8XGtDFrY7xLPdavp8mRwyrYs6-3nzzfXD9NpsP5_e1sMp4PDVOiHVrOc1cwEIUy4IqMM8YJugW4jAFFSSRyyl2eMbVnLHCFHDIr0BQccpn1k1nnLRpc6bUv39DvdIOl_gwav9To29JUVucISDlnRgnHCinRKI7xFw4ywxeKRNegc71g9Uc1Hc_1PiMUlMxy2EJkLzo2Hv--saHVq2bj63iqplRKLkQuRKRGHWV8E4K37lsLRO9b0V0ret-Kjq3EDdJthEjWS-t_vP-tfACpYYtU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288677577</pqid></control><display><type>article</type><title>Separation of variables and scalar products at any rank</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Publicly Available Content (ProQuest)</source><creator>Cavaglià, Andrea ; Gromov, Nikolay ; Levkovich-Maslyuk, Fedor</creator><creatorcontrib>Cavaglià, Andrea ; Gromov, Nikolay ; Levkovich-Maslyuk, Fedor</creatorcontrib><description>A bstract Separation of variables (SoV) is a special property of integrable models which ensures that the wavefunction has a very simple factorised form in a specially designed basis. Even though the factorisation of the wavefunction was recently established for higher rank models by two of the authors and G. Sizov, the measure for the scalar product was not known beyond the case of rank one symmetry. In this paper we show how this measure can be found, bypassing an explicit SoV construction. A key new observation is that the measure for spin chains in a highest-weight infinite dimensional representation of sl( N ) couples Q-functions at different nesting levels in a non-symmetric fashion. We also managed to express a large number of form factors as ratios of determinants in our new approach. We expect our method to be applicable in a much wider setup including the problem of computing correlators in integrable CFTs such as the fishnet theory, N = 4 SYM and the ABJM model.</description><identifier>ISSN: 1029-8479</identifier><identifier>ISSN: 1126-6708</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP09(2019)052</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bethe Ansatz ; Classical and Quantum Gravitation ; Correlators ; Elementary Particles ; Form factors ; General Physics ; High energy physics ; High Energy Physics - Theory ; Lattice Integrable Models ; Mathematical Physics ; Nesting ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Separation ; String Theory ; Symmetry ; Wave functions</subject><ispartof>The journal of high energy physics, 2019-09, Vol.2019 (9), p.1-29, Article 52</ispartof><rights>The Author(s) 2019</rights><rights>Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-e665fd417d9c1fd364460afb1f3412a808a626f534917d9e169a613e7acd61583</citedby><cites>FETCH-LOGICAL-c497t-e665fd417d9c1fd364460afb1f3412a808a626f534917d9e169a613e7acd61583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2288677577/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2288677577?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02198351$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cavaglià, Andrea</creatorcontrib><creatorcontrib>Gromov, Nikolay</creatorcontrib><creatorcontrib>Levkovich-Maslyuk, Fedor</creatorcontrib><title>Separation of variables and scalar products at any rank</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract Separation of variables (SoV) is a special property of integrable models which ensures that the wavefunction has a very simple factorised form in a specially designed basis. Even though the factorisation of the wavefunction was recently established for higher rank models by two of the authors and G. Sizov, the measure for the scalar product was not known beyond the case of rank one symmetry. In this paper we show how this measure can be found, bypassing an explicit SoV construction. A key new observation is that the measure for spin chains in a highest-weight infinite dimensional representation of sl( N ) couples Q-functions at different nesting levels in a non-symmetric fashion. We also managed to express a large number of form factors as ratios of determinants in our new approach. We expect our method to be applicable in a much wider setup including the problem of computing correlators in integrable CFTs such as the fishnet theory, N = 4 SYM and the ABJM model.</description><subject>Bethe Ansatz</subject><subject>Classical and Quantum Gravitation</subject><subject>Correlators</subject><subject>Elementary Particles</subject><subject>Form factors</subject><subject>General Physics</subject><subject>High energy physics</subject><subject>High Energy Physics - Theory</subject><subject>Lattice Integrable Models</subject><subject>Mathematical Physics</subject><subject>Nesting</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Separation</subject><subject>String Theory</subject><subject>Symmetry</subject><subject>Wave functions</subject><issn>1029-8479</issn><issn>1126-6708</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU1LAzEQhhdRsFbPXhe82ENtJpvNx7EUtZWCgnoO02xSt667NdkW-u9NXfHj4CnDyzMPGd4kOQdyBYSI0d30-oGoS0pADUhOD5IeEKqGkgl1-Gs-Tk5CWBECOSjSS8SjXaPHtmzqtHHpFn2Ji8qGFOsiDQYr9OnaN8XGtDFrY7xLPdavp8mRwyrYs6-3nzzfXD9NpsP5_e1sMp4PDVOiHVrOc1cwEIUy4IqMM8YJugW4jAFFSSRyyl2eMbVnLHCFHDIr0BQccpn1k1nnLRpc6bUv39DvdIOl_gwav9To29JUVucISDlnRgnHCinRKI7xFw4ywxeKRNegc71g9Uc1Hc_1PiMUlMxy2EJkLzo2Hv--saHVq2bj63iqplRKLkQuRKRGHWV8E4K37lsLRO9b0V0ret-Kjq3EDdJthEjWS-t_vP-tfACpYYtU</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Cavaglià, Andrea</creator><creator>Gromov, Nikolay</creator><creator>Levkovich-Maslyuk, Fedor</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope></search><sort><creationdate>20190901</creationdate><title>Separation of variables and scalar products at any rank</title><author>Cavaglià, Andrea ; Gromov, Nikolay ; Levkovich-Maslyuk, Fedor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-e665fd417d9c1fd364460afb1f3412a808a626f534917d9e169a613e7acd61583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bethe Ansatz</topic><topic>Classical and Quantum Gravitation</topic><topic>Correlators</topic><topic>Elementary Particles</topic><topic>Form factors</topic><topic>General Physics</topic><topic>High energy physics</topic><topic>High Energy Physics - Theory</topic><topic>Lattice Integrable Models</topic><topic>Mathematical Physics</topic><topic>Nesting</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Separation</topic><topic>String Theory</topic><topic>Symmetry</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavaglià, Andrea</creatorcontrib><creatorcontrib>Gromov, Nikolay</creatorcontrib><creatorcontrib>Levkovich-Maslyuk, Fedor</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavaglià, Andrea</au><au>Gromov, Nikolay</au><au>Levkovich-Maslyuk, Fedor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separation of variables and scalar products at any rank</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>2019</volume><issue>9</issue><spage>1</spage><epage>29</epage><pages>1-29</pages><artnum>52</artnum><issn>1029-8479</issn><issn>1126-6708</issn><eissn>1029-8479</eissn><abstract>A bstract Separation of variables (SoV) is a special property of integrable models which ensures that the wavefunction has a very simple factorised form in a specially designed basis. Even though the factorisation of the wavefunction was recently established for higher rank models by two of the authors and G. Sizov, the measure for the scalar product was not known beyond the case of rank one symmetry. In this paper we show how this measure can be found, bypassing an explicit SoV construction. A key new observation is that the measure for spin chains in a highest-weight infinite dimensional representation of sl( N ) couples Q-functions at different nesting levels in a non-symmetric fashion. We also managed to express a large number of form factors as ratios of determinants in our new approach. We expect our method to be applicable in a much wider setup including the problem of computing correlators in integrable CFTs such as the fishnet theory, N = 4 SYM and the ABJM model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP09(2019)052</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2019-09, Vol.2019 (9), p.1-29, Article 52
issn 1029-8479
1126-6708
1029-8479
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5a1a2664c97f4d88ac96a497f13c6b90
source Springer Nature - SpringerLink Journals - Fully Open Access ; Publicly Available Content (ProQuest)
subjects Bethe Ansatz
Classical and Quantum Gravitation
Correlators
Elementary Particles
Form factors
General Physics
High energy physics
High Energy Physics - Theory
Lattice Integrable Models
Mathematical Physics
Nesting
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Separation
String Theory
Symmetry
Wave functions
title Separation of variables and scalar products at any rank
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separation%20of%20variables%20and%20scalar%20products%20at%20any%20rank&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Cavagli%C3%A0,%20Andrea&rft.date=2019-09-01&rft.volume=2019&rft.issue=9&rft.spage=1&rft.epage=29&rft.pages=1-29&rft.artnum=52&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP09(2019)052&rft_dat=%3Cproquest_doaj_%3E2288677577%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-e665fd417d9c1fd364460afb1f3412a808a626f534917d9e169a613e7acd61583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2288677577&rft_id=info:pmid/&rfr_iscdi=true