Loading…
Separation of variables and scalar products at any rank
A bstract Separation of variables (SoV) is a special property of integrable models which ensures that the wavefunction has a very simple factorised form in a specially designed basis. Even though the factorisation of the wavefunction was recently established for higher rank models by two of the auth...
Saved in:
Published in: | The journal of high energy physics 2019-09, Vol.2019 (9), p.1-29, Article 52 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c497t-e665fd417d9c1fd364460afb1f3412a808a626f534917d9e169a613e7acd61583 |
---|---|
cites | cdi_FETCH-LOGICAL-c497t-e665fd417d9c1fd364460afb1f3412a808a626f534917d9e169a613e7acd61583 |
container_end_page | 29 |
container_issue | 9 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2019 |
creator | Cavaglià, Andrea Gromov, Nikolay Levkovich-Maslyuk, Fedor |
description | A
bstract
Separation of variables (SoV) is a special property of integrable models which ensures that the wavefunction has a very simple factorised form in a specially designed basis. Even though the factorisation of the wavefunction was recently established for higher rank models by two of the authors and G. Sizov, the measure for the scalar product was not known beyond the case of rank one symmetry. In this paper we show how this measure can be found, bypassing an explicit SoV construction. A key new observation is that the measure for spin chains in a highest-weight infinite dimensional representation of sl(
N
) couples Q-functions at different nesting levels in a non-symmetric fashion. We also managed to express a large number of form factors as ratios of determinants in our new approach. We expect our method to be applicable in a much wider setup including the problem of computing correlators in integrable CFTs such as the fishnet theory,
N
= 4 SYM and the ABJM model. |
doi_str_mv | 10.1007/JHEP09(2019)052 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5a1a2664c97f4d88ac96a497f13c6b90</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5a1a2664c97f4d88ac96a497f13c6b90</doaj_id><sourcerecordid>2288677577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-e665fd417d9c1fd364460afb1f3412a808a626f534917d9e169a613e7acd61583</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhhdRsFbPXhe82ENtJpvNx7EUtZWCgnoO02xSt667NdkW-u9NXfHj4CnDyzMPGd4kOQdyBYSI0d30-oGoS0pADUhOD5IeEKqGkgl1-Gs-Tk5CWBECOSjSS8SjXaPHtmzqtHHpFn2Ji8qGFOsiDQYr9OnaN8XGtDFrY7xLPdavp8mRwyrYs6-3nzzfXD9NpsP5_e1sMp4PDVOiHVrOc1cwEIUy4IqMM8YJugW4jAFFSSRyyl2eMbVnLHCFHDIr0BQccpn1k1nnLRpc6bUv39DvdIOl_gwav9To29JUVucISDlnRgnHCinRKI7xFw4ywxeKRNegc71g9Uc1Hc_1PiMUlMxy2EJkLzo2Hv--saHVq2bj63iqplRKLkQuRKRGHWV8E4K37lsLRO9b0V0ret-Kjq3EDdJthEjWS-t_vP-tfACpYYtU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288677577</pqid></control><display><type>article</type><title>Separation of variables and scalar products at any rank</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Publicly Available Content (ProQuest)</source><creator>Cavaglià, Andrea ; Gromov, Nikolay ; Levkovich-Maslyuk, Fedor</creator><creatorcontrib>Cavaglià, Andrea ; Gromov, Nikolay ; Levkovich-Maslyuk, Fedor</creatorcontrib><description>A
bstract
Separation of variables (SoV) is a special property of integrable models which ensures that the wavefunction has a very simple factorised form in a specially designed basis. Even though the factorisation of the wavefunction was recently established for higher rank models by two of the authors and G. Sizov, the measure for the scalar product was not known beyond the case of rank one symmetry. In this paper we show how this measure can be found, bypassing an explicit SoV construction. A key new observation is that the measure for spin chains in a highest-weight infinite dimensional representation of sl(
N
) couples Q-functions at different nesting levels in a non-symmetric fashion. We also managed to express a large number of form factors as ratios of determinants in our new approach. We expect our method to be applicable in a much wider setup including the problem of computing correlators in integrable CFTs such as the fishnet theory,
N
= 4 SYM and the ABJM model.</description><identifier>ISSN: 1029-8479</identifier><identifier>ISSN: 1126-6708</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP09(2019)052</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bethe Ansatz ; Classical and Quantum Gravitation ; Correlators ; Elementary Particles ; Form factors ; General Physics ; High energy physics ; High Energy Physics - Theory ; Lattice Integrable Models ; Mathematical Physics ; Nesting ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Separation ; String Theory ; Symmetry ; Wave functions</subject><ispartof>The journal of high energy physics, 2019-09, Vol.2019 (9), p.1-29, Article 52</ispartof><rights>The Author(s) 2019</rights><rights>Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-e665fd417d9c1fd364460afb1f3412a808a626f534917d9e169a613e7acd61583</citedby><cites>FETCH-LOGICAL-c497t-e665fd417d9c1fd364460afb1f3412a808a626f534917d9e169a613e7acd61583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2288677577/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2288677577?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02198351$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cavaglià, Andrea</creatorcontrib><creatorcontrib>Gromov, Nikolay</creatorcontrib><creatorcontrib>Levkovich-Maslyuk, Fedor</creatorcontrib><title>Separation of variables and scalar products at any rank</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
Separation of variables (SoV) is a special property of integrable models which ensures that the wavefunction has a very simple factorised form in a specially designed basis. Even though the factorisation of the wavefunction was recently established for higher rank models by two of the authors and G. Sizov, the measure for the scalar product was not known beyond the case of rank one symmetry. In this paper we show how this measure can be found, bypassing an explicit SoV construction. A key new observation is that the measure for spin chains in a highest-weight infinite dimensional representation of sl(
N
) couples Q-functions at different nesting levels in a non-symmetric fashion. We also managed to express a large number of form factors as ratios of determinants in our new approach. We expect our method to be applicable in a much wider setup including the problem of computing correlators in integrable CFTs such as the fishnet theory,
N
= 4 SYM and the ABJM model.</description><subject>Bethe Ansatz</subject><subject>Classical and Quantum Gravitation</subject><subject>Correlators</subject><subject>Elementary Particles</subject><subject>Form factors</subject><subject>General Physics</subject><subject>High energy physics</subject><subject>High Energy Physics - Theory</subject><subject>Lattice Integrable Models</subject><subject>Mathematical Physics</subject><subject>Nesting</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Separation</subject><subject>String Theory</subject><subject>Symmetry</subject><subject>Wave functions</subject><issn>1029-8479</issn><issn>1126-6708</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU1LAzEQhhdRsFbPXhe82ENtJpvNx7EUtZWCgnoO02xSt667NdkW-u9NXfHj4CnDyzMPGd4kOQdyBYSI0d30-oGoS0pADUhOD5IeEKqGkgl1-Gs-Tk5CWBECOSjSS8SjXaPHtmzqtHHpFn2Ji8qGFOsiDQYr9OnaN8XGtDFrY7xLPdavp8mRwyrYs6-3nzzfXD9NpsP5_e1sMp4PDVOiHVrOc1cwEIUy4IqMM8YJugW4jAFFSSRyyl2eMbVnLHCFHDIr0BQccpn1k1nnLRpc6bUv39DvdIOl_gwav9To29JUVucISDlnRgnHCinRKI7xFw4ywxeKRNegc71g9Uc1Hc_1PiMUlMxy2EJkLzo2Hv--saHVq2bj63iqplRKLkQuRKRGHWV8E4K37lsLRO9b0V0ret-Kjq3EDdJthEjWS-t_vP-tfACpYYtU</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Cavaglià, Andrea</creator><creator>Gromov, Nikolay</creator><creator>Levkovich-Maslyuk, Fedor</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope></search><sort><creationdate>20190901</creationdate><title>Separation of variables and scalar products at any rank</title><author>Cavaglià, Andrea ; Gromov, Nikolay ; Levkovich-Maslyuk, Fedor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-e665fd417d9c1fd364460afb1f3412a808a626f534917d9e169a613e7acd61583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bethe Ansatz</topic><topic>Classical and Quantum Gravitation</topic><topic>Correlators</topic><topic>Elementary Particles</topic><topic>Form factors</topic><topic>General Physics</topic><topic>High energy physics</topic><topic>High Energy Physics - Theory</topic><topic>Lattice Integrable Models</topic><topic>Mathematical Physics</topic><topic>Nesting</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Separation</topic><topic>String Theory</topic><topic>Symmetry</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavaglià, Andrea</creatorcontrib><creatorcontrib>Gromov, Nikolay</creatorcontrib><creatorcontrib>Levkovich-Maslyuk, Fedor</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavaglià, Andrea</au><au>Gromov, Nikolay</au><au>Levkovich-Maslyuk, Fedor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separation of variables and scalar products at any rank</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>2019</volume><issue>9</issue><spage>1</spage><epage>29</epage><pages>1-29</pages><artnum>52</artnum><issn>1029-8479</issn><issn>1126-6708</issn><eissn>1029-8479</eissn><abstract>A
bstract
Separation of variables (SoV) is a special property of integrable models which ensures that the wavefunction has a very simple factorised form in a specially designed basis. Even though the factorisation of the wavefunction was recently established for higher rank models by two of the authors and G. Sizov, the measure for the scalar product was not known beyond the case of rank one symmetry. In this paper we show how this measure can be found, bypassing an explicit SoV construction. A key new observation is that the measure for spin chains in a highest-weight infinite dimensional representation of sl(
N
) couples Q-functions at different nesting levels in a non-symmetric fashion. We also managed to express a large number of form factors as ratios of determinants in our new approach. We expect our method to be applicable in a much wider setup including the problem of computing correlators in integrable CFTs such as the fishnet theory,
N
= 4 SYM and the ABJM model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP09(2019)052</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2019-09, Vol.2019 (9), p.1-29, Article 52 |
issn | 1029-8479 1126-6708 1029-8479 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5a1a2664c97f4d88ac96a497f13c6b90 |
source | Springer Nature - SpringerLink Journals - Fully Open Access ; Publicly Available Content (ProQuest) |
subjects | Bethe Ansatz Classical and Quantum Gravitation Correlators Elementary Particles Form factors General Physics High energy physics High Energy Physics - Theory Lattice Integrable Models Mathematical Physics Nesting Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Separation String Theory Symmetry Wave functions |
title | Separation of variables and scalar products at any rank |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separation%20of%20variables%20and%20scalar%20products%20at%20any%20rank&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Cavagli%C3%A0,%20Andrea&rft.date=2019-09-01&rft.volume=2019&rft.issue=9&rft.spage=1&rft.epage=29&rft.pages=1-29&rft.artnum=52&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP09(2019)052&rft_dat=%3Cproquest_doaj_%3E2288677577%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-e665fd417d9c1fd364460afb1f3412a808a626f534917d9e169a613e7acd61583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2288677577&rft_id=info:pmid/&rfr_iscdi=true |