Loading…
Latent porosity of planar tris(phenylisoxazolyl)benzene
Interest in developing separation systems for chemical entities based on crystalline molecules has provided momentum for the fabrication of synthetic porous materials showing selectivity in molecular encapsulation, such as metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organi...
Saved in:
Published in: | Nature communications 2024-09, Vol.15 (1), p.8314-10, Article 8314 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-441a92a434d91031678378f63d70f04fe7dffc9a2a57402ee2dc01dd62efb6f43 |
container_end_page | 10 |
container_issue | 1 |
container_start_page | 8314 |
container_title | Nature communications |
container_volume | 15 |
creator | Ono, Yudai Hirao, Takehiro Kawata, Naomi Haino, Takeharu |
description | Interest in developing separation systems for chemical entities based on crystalline molecules has provided momentum for the fabrication of synthetic porous materials showing selectivity in molecular encapsulation, such as metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, zeolites, and macrocyclic molecular crystals. Among these, macrocyclic molecular crystals have generated renewed interest for use in separation systems. Selective encapsulation relies on the sizes, shapes, and dimensions of the pores present in the macrocyclic cavities; thus, nonmacrocyclic molecular crystals with high selectivity for molecular encapsulation via porosity-without-pore behaviors have not been studied. Here, we report that planar tris(phenylisoxazolyl)benzene forms porous molecular crystals possessing latent pores exhibiting porosity-without-pore behavior. After exposing the crystals to complementary guest molecules, the latent pores encapsulate
cis
- and
trans
-decalin while maintaining the structural rigidity responsible for the high selectivity. The encapsulation via porosity without pores is a kinetic process with remarkable selectivity for
cis
-decalin over
trans
-decalin with a
cis
-/
trans
-ratio of 96:4, which is confirmed by single-crystal X-ray diffraction and powder X-ray diffraction analyses. Hirshfeld surface analysis and fingerprint plots show that the latent intermolecular pores are rigidified by intermolecular dipole‒dipole and π–π stacking interactions, which determines the remarkable selectivity of molecular recognition.
Selective encapsulation of molecules within macrocyclic hosts relies on the pore features and nonmacrocyclic crystals for selective molecular encapsulation have yet been challenging. Here, the authors show that planar tris(phenylisoxazolyl)benzene exhibits a porosity without pore behavior and selectively encapsulate cis- over trans-decalin. |
doi_str_mv | 10.1038/s41467-024-52526-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5a60a44f57064d34a1b46f6e28bdff65</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5a60a44f57064d34a1b46f6e28bdff65</doaj_id><sourcerecordid>3110561684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-441a92a434d91031678378f63d70f04fe7dffc9a2a57402ee2dc01dd62efb6f43</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EolXpH-CAVuJSDgHbM7HjE0IVH5VW4gJny4nH26yycbCziO2vx92U0nLAF1ued575eBl7KfhbwaF5l1Gg0hWXWNWylqoyT9ip5CgqoSU8ffA-Yec5b3k5YESD-JydgAEAIc0p02s30zivpphi7ufDKobVNLjRpdWc-nwxXdN4GPocf7mbOByGNy2NNzTSC_YsuCHT-d19xr5_-vjt8ku1_vr56vLDuupQyrlCFM5Ih4DelLaF0g3oJijwmgeOgbQPoTNOulojl0TSd1x4rySFVgWEM3a1cH10WzulfufSwUbX2-NHTBvr0tx3A9naKe4QQ625Qg_oRIsqKJJNW4qourDeL6xp3-7Id2Xu5IZH0MeRsb-2m_jTCoGgDOhCuLgjpPhjT3m2uz53NJSFUdxnC0JwLZsGZJG-_ke6jfs0ll0dVbUSqrkdTy6qrqw_Jwr33Qhub322i8-2-GyPPltTkl49nOM-5Y-rRQCLIJfQuKH0t_Z_sL8BxqOypQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110561684</pqid></control><display><type>article</type><title>Latent porosity of planar tris(phenylisoxazolyl)benzene</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ono, Yudai ; Hirao, Takehiro ; Kawata, Naomi ; Haino, Takeharu</creator><creatorcontrib>Ono, Yudai ; Hirao, Takehiro ; Kawata, Naomi ; Haino, Takeharu</creatorcontrib><description>Interest in developing separation systems for chemical entities based on crystalline molecules has provided momentum for the fabrication of synthetic porous materials showing selectivity in molecular encapsulation, such as metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, zeolites, and macrocyclic molecular crystals. Among these, macrocyclic molecular crystals have generated renewed interest for use in separation systems. Selective encapsulation relies on the sizes, shapes, and dimensions of the pores present in the macrocyclic cavities; thus, nonmacrocyclic molecular crystals with high selectivity for molecular encapsulation via porosity-without-pore behaviors have not been studied. Here, we report that planar tris(phenylisoxazolyl)benzene forms porous molecular crystals possessing latent pores exhibiting porosity-without-pore behavior. After exposing the crystals to complementary guest molecules, the latent pores encapsulate
cis
- and
trans
-decalin while maintaining the structural rigidity responsible for the high selectivity. The encapsulation via porosity without pores is a kinetic process with remarkable selectivity for
cis
-decalin over
trans
-decalin with a
cis
-/
trans
-ratio of 96:4, which is confirmed by single-crystal X-ray diffraction and powder X-ray diffraction analyses. Hirshfeld surface analysis and fingerprint plots show that the latent intermolecular pores are rigidified by intermolecular dipole‒dipole and π–π stacking interactions, which determines the remarkable selectivity of molecular recognition.
Selective encapsulation of molecules within macrocyclic hosts relies on the pore features and nonmacrocyclic crystals for selective molecular encapsulation have yet been challenging. Here, the authors show that planar tris(phenylisoxazolyl)benzene exhibits a porosity without pore behavior and selectively encapsulate cis- over trans-decalin.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-52526-9</identifier><identifier>PMID: 39333129</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 140/58 ; 639/301/923/3931 ; 639/638/541/961 ; 639/638/541/966 ; Benzene ; Cage molecules ; Chemical bonds ; Crystals ; Decalin ; Dipoles ; Encapsulation ; Fabrication ; Feature recognition ; Humanities and Social Sciences ; Hydrocarbons ; Hydrogen bonding ; Metal-organic frameworks ; multidisciplinary ; Pores ; Porosity ; Porous materials ; Rigidity ; Science ; Science (multidisciplinary) ; Selectivity ; Separation ; Single crystals ; Surface analysis (chemical) ; X ray powder diffraction ; X-ray diffraction ; Zeolites</subject><ispartof>Nature communications, 2024-09, Vol.15 (1), p.8314-10, Article 8314</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-441a92a434d91031678378f63d70f04fe7dffc9a2a57402ee2dc01dd62efb6f43</cites><orcidid>0000-0002-0945-2893 ; 0009-0001-0694-7321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3110561684/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3110561684?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39333129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ono, Yudai</creatorcontrib><creatorcontrib>Hirao, Takehiro</creatorcontrib><creatorcontrib>Kawata, Naomi</creatorcontrib><creatorcontrib>Haino, Takeharu</creatorcontrib><title>Latent porosity of planar tris(phenylisoxazolyl)benzene</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Interest in developing separation systems for chemical entities based on crystalline molecules has provided momentum for the fabrication of synthetic porous materials showing selectivity in molecular encapsulation, such as metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, zeolites, and macrocyclic molecular crystals. Among these, macrocyclic molecular crystals have generated renewed interest for use in separation systems. Selective encapsulation relies on the sizes, shapes, and dimensions of the pores present in the macrocyclic cavities; thus, nonmacrocyclic molecular crystals with high selectivity for molecular encapsulation via porosity-without-pore behaviors have not been studied. Here, we report that planar tris(phenylisoxazolyl)benzene forms porous molecular crystals possessing latent pores exhibiting porosity-without-pore behavior. After exposing the crystals to complementary guest molecules, the latent pores encapsulate
cis
- and
trans
-decalin while maintaining the structural rigidity responsible for the high selectivity. The encapsulation via porosity without pores is a kinetic process with remarkable selectivity for
cis
-decalin over
trans
-decalin with a
cis
-/
trans
-ratio of 96:4, which is confirmed by single-crystal X-ray diffraction and powder X-ray diffraction analyses. Hirshfeld surface analysis and fingerprint plots show that the latent intermolecular pores are rigidified by intermolecular dipole‒dipole and π–π stacking interactions, which determines the remarkable selectivity of molecular recognition.
Selective encapsulation of molecules within macrocyclic hosts relies on the pore features and nonmacrocyclic crystals for selective molecular encapsulation have yet been challenging. Here, the authors show that planar tris(phenylisoxazolyl)benzene exhibits a porosity without pore behavior and selectively encapsulate cis- over trans-decalin.</description><subject>140/131</subject><subject>140/58</subject><subject>639/301/923/3931</subject><subject>639/638/541/961</subject><subject>639/638/541/966</subject><subject>Benzene</subject><subject>Cage molecules</subject><subject>Chemical bonds</subject><subject>Crystals</subject><subject>Decalin</subject><subject>Dipoles</subject><subject>Encapsulation</subject><subject>Fabrication</subject><subject>Feature recognition</subject><subject>Humanities and Social Sciences</subject><subject>Hydrocarbons</subject><subject>Hydrogen bonding</subject><subject>Metal-organic frameworks</subject><subject>multidisciplinary</subject><subject>Pores</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Rigidity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Selectivity</subject><subject>Separation</subject><subject>Single crystals</subject><subject>Surface analysis (chemical)</subject><subject>X ray powder diffraction</subject><subject>X-ray diffraction</subject><subject>Zeolites</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhi0EolXpH-CAVuJSDgHbM7HjE0IVH5VW4gJny4nH26yycbCziO2vx92U0nLAF1ued575eBl7KfhbwaF5l1Gg0hWXWNWylqoyT9ip5CgqoSU8ffA-Yec5b3k5YESD-JydgAEAIc0p02s30zivpphi7ufDKobVNLjRpdWc-nwxXdN4GPocf7mbOByGNy2NNzTSC_YsuCHT-d19xr5_-vjt8ku1_vr56vLDuupQyrlCFM5Ih4DelLaF0g3oJijwmgeOgbQPoTNOulojl0TSd1x4rySFVgWEM3a1cH10WzulfufSwUbX2-NHTBvr0tx3A9naKe4QQ625Qg_oRIsqKJJNW4qourDeL6xp3-7Id2Xu5IZH0MeRsb-2m_jTCoGgDOhCuLgjpPhjT3m2uz53NJSFUdxnC0JwLZsGZJG-_ke6jfs0ll0dVbUSqrkdTy6qrqw_Jwr33Qhub322i8-2-GyPPltTkl49nOM-5Y-rRQCLIJfQuKH0t_Z_sL8BxqOypQ</recordid><startdate>20240927</startdate><enddate>20240927</enddate><creator>Ono, Yudai</creator><creator>Hirao, Takehiro</creator><creator>Kawata, Naomi</creator><creator>Haino, Takeharu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0945-2893</orcidid><orcidid>https://orcid.org/0009-0001-0694-7321</orcidid></search><sort><creationdate>20240927</creationdate><title>Latent porosity of planar tris(phenylisoxazolyl)benzene</title><author>Ono, Yudai ; Hirao, Takehiro ; Kawata, Naomi ; Haino, Takeharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-441a92a434d91031678378f63d70f04fe7dffc9a2a57402ee2dc01dd62efb6f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>140/131</topic><topic>140/58</topic><topic>639/301/923/3931</topic><topic>639/638/541/961</topic><topic>639/638/541/966</topic><topic>Benzene</topic><topic>Cage molecules</topic><topic>Chemical bonds</topic><topic>Crystals</topic><topic>Decalin</topic><topic>Dipoles</topic><topic>Encapsulation</topic><topic>Fabrication</topic><topic>Feature recognition</topic><topic>Humanities and Social Sciences</topic><topic>Hydrocarbons</topic><topic>Hydrogen bonding</topic><topic>Metal-organic frameworks</topic><topic>multidisciplinary</topic><topic>Pores</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Rigidity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Selectivity</topic><topic>Separation</topic><topic>Single crystals</topic><topic>Surface analysis (chemical)</topic><topic>X ray powder diffraction</topic><topic>X-ray diffraction</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ono, Yudai</creatorcontrib><creatorcontrib>Hirao, Takehiro</creatorcontrib><creatorcontrib>Kawata, Naomi</creatorcontrib><creatorcontrib>Haino, Takeharu</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>test</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ono, Yudai</au><au>Hirao, Takehiro</au><au>Kawata, Naomi</au><au>Haino, Takeharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Latent porosity of planar tris(phenylisoxazolyl)benzene</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-09-27</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>8314</spage><epage>10</epage><pages>8314-10</pages><artnum>8314</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Interest in developing separation systems for chemical entities based on crystalline molecules has provided momentum for the fabrication of synthetic porous materials showing selectivity in molecular encapsulation, such as metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, zeolites, and macrocyclic molecular crystals. Among these, macrocyclic molecular crystals have generated renewed interest for use in separation systems. Selective encapsulation relies on the sizes, shapes, and dimensions of the pores present in the macrocyclic cavities; thus, nonmacrocyclic molecular crystals with high selectivity for molecular encapsulation via porosity-without-pore behaviors have not been studied. Here, we report that planar tris(phenylisoxazolyl)benzene forms porous molecular crystals possessing latent pores exhibiting porosity-without-pore behavior. After exposing the crystals to complementary guest molecules, the latent pores encapsulate
cis
- and
trans
-decalin while maintaining the structural rigidity responsible for the high selectivity. The encapsulation via porosity without pores is a kinetic process with remarkable selectivity for
cis
-decalin over
trans
-decalin with a
cis
-/
trans
-ratio of 96:4, which is confirmed by single-crystal X-ray diffraction and powder X-ray diffraction analyses. Hirshfeld surface analysis and fingerprint plots show that the latent intermolecular pores are rigidified by intermolecular dipole‒dipole and π–π stacking interactions, which determines the remarkable selectivity of molecular recognition.
Selective encapsulation of molecules within macrocyclic hosts relies on the pore features and nonmacrocyclic crystals for selective molecular encapsulation have yet been challenging. Here, the authors show that planar tris(phenylisoxazolyl)benzene exhibits a porosity without pore behavior and selectively encapsulate cis- over trans-decalin.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39333129</pmid><doi>10.1038/s41467-024-52526-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0945-2893</orcidid><orcidid>https://orcid.org/0009-0001-0694-7321</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-09, Vol.15 (1), p.8314-10, Article 8314 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5a60a44f57064d34a1b46f6e28bdff65 |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 140/131 140/58 639/301/923/3931 639/638/541/961 639/638/541/966 Benzene Cage molecules Chemical bonds Crystals Decalin Dipoles Encapsulation Fabrication Feature recognition Humanities and Social Sciences Hydrocarbons Hydrogen bonding Metal-organic frameworks multidisciplinary Pores Porosity Porous materials Rigidity Science Science (multidisciplinary) Selectivity Separation Single crystals Surface analysis (chemical) X ray powder diffraction X-ray diffraction Zeolites |
title | Latent porosity of planar tris(phenylisoxazolyl)benzene |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Latent%20porosity%20of%20planar%20tris(phenylisoxazolyl)benzene&rft.jtitle=Nature%20communications&rft.au=Ono,%20Yudai&rft.date=2024-09-27&rft.volume=15&rft.issue=1&rft.spage=8314&rft.epage=10&rft.pages=8314-10&rft.artnum=8314&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-52526-9&rft_dat=%3Cproquest_doaj_%3E3110561684%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-441a92a434d91031678378f63d70f04fe7dffc9a2a57402ee2dc01dd62efb6f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110561684&rft_id=info:pmid/39333129&rfr_iscdi=true |