Loading…

Latent porosity of planar tris(phenylisoxazolyl)benzene

Interest in developing separation systems for chemical entities based on crystalline molecules has provided momentum for the fabrication of synthetic porous materials showing selectivity in molecular encapsulation, such as metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organi...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-09, Vol.15 (1), p.8314-10, Article 8314
Main Authors: Ono, Yudai, Hirao, Takehiro, Kawata, Naomi, Haino, Takeharu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c422t-441a92a434d91031678378f63d70f04fe7dffc9a2a57402ee2dc01dd62efb6f43
container_end_page 10
container_issue 1
container_start_page 8314
container_title Nature communications
container_volume 15
creator Ono, Yudai
Hirao, Takehiro
Kawata, Naomi
Haino, Takeharu
description Interest in developing separation systems for chemical entities based on crystalline molecules has provided momentum for the fabrication of synthetic porous materials showing selectivity in molecular encapsulation, such as metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, zeolites, and macrocyclic molecular crystals. Among these, macrocyclic molecular crystals have generated renewed interest for use in separation systems. Selective encapsulation relies on the sizes, shapes, and dimensions of the pores present in the macrocyclic cavities; thus, nonmacrocyclic molecular crystals with high selectivity for molecular encapsulation via porosity-without-pore behaviors have not been studied. Here, we report that planar tris(phenylisoxazolyl)benzene forms porous molecular crystals possessing latent pores exhibiting porosity-without-pore behavior. After exposing the crystals to complementary guest molecules, the latent pores encapsulate cis - and trans -decalin while maintaining the structural rigidity responsible for the high selectivity. The encapsulation via porosity without pores is a kinetic process with remarkable selectivity for cis -decalin over trans -decalin with a cis -/ trans -ratio of 96:4, which is confirmed by single-crystal X-ray diffraction and powder X-ray diffraction analyses. Hirshfeld surface analysis and fingerprint plots show that the latent intermolecular pores are rigidified by intermolecular dipole‒dipole and π–π stacking interactions, which determines the remarkable selectivity of molecular recognition. Selective encapsulation of molecules within macrocyclic hosts relies on the pore features and nonmacrocyclic crystals for selective molecular encapsulation have yet been challenging. Here, the authors show that planar tris(phenylisoxazolyl)benzene exhibits a porosity without pore behavior and selectively encapsulate cis- over trans-decalin.
doi_str_mv 10.1038/s41467-024-52526-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5a60a44f57064d34a1b46f6e28bdff65</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5a60a44f57064d34a1b46f6e28bdff65</doaj_id><sourcerecordid>3110561684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-441a92a434d91031678378f63d70f04fe7dffc9a2a57402ee2dc01dd62efb6f43</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EolXpH-CAVuJSDgHbM7HjE0IVH5VW4gJny4nH26yycbCziO2vx92U0nLAF1ued575eBl7KfhbwaF5l1Gg0hWXWNWylqoyT9ip5CgqoSU8ffA-Yec5b3k5YESD-JydgAEAIc0p02s30zivpphi7ufDKobVNLjRpdWc-nwxXdN4GPocf7mbOByGNy2NNzTSC_YsuCHT-d19xr5_-vjt8ku1_vr56vLDuupQyrlCFM5Ih4DelLaF0g3oJijwmgeOgbQPoTNOulojl0TSd1x4rySFVgWEM3a1cH10WzulfufSwUbX2-NHTBvr0tx3A9naKe4QQ625Qg_oRIsqKJJNW4qourDeL6xp3-7Id2Xu5IZH0MeRsb-2m_jTCoGgDOhCuLgjpPhjT3m2uz53NJSFUdxnC0JwLZsGZJG-_ke6jfs0ll0dVbUSqrkdTy6qrqw_Jwr33Qhub322i8-2-GyPPltTkl49nOM-5Y-rRQCLIJfQuKH0t_Z_sL8BxqOypQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110561684</pqid></control><display><type>article</type><title>Latent porosity of planar tris(phenylisoxazolyl)benzene</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ono, Yudai ; Hirao, Takehiro ; Kawata, Naomi ; Haino, Takeharu</creator><creatorcontrib>Ono, Yudai ; Hirao, Takehiro ; Kawata, Naomi ; Haino, Takeharu</creatorcontrib><description>Interest in developing separation systems for chemical entities based on crystalline molecules has provided momentum for the fabrication of synthetic porous materials showing selectivity in molecular encapsulation, such as metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, zeolites, and macrocyclic molecular crystals. Among these, macrocyclic molecular crystals have generated renewed interest for use in separation systems. Selective encapsulation relies on the sizes, shapes, and dimensions of the pores present in the macrocyclic cavities; thus, nonmacrocyclic molecular crystals with high selectivity for molecular encapsulation via porosity-without-pore behaviors have not been studied. Here, we report that planar tris(phenylisoxazolyl)benzene forms porous molecular crystals possessing latent pores exhibiting porosity-without-pore behavior. After exposing the crystals to complementary guest molecules, the latent pores encapsulate cis - and trans -decalin while maintaining the structural rigidity responsible for the high selectivity. The encapsulation via porosity without pores is a kinetic process with remarkable selectivity for cis -decalin over trans -decalin with a cis -/ trans -ratio of 96:4, which is confirmed by single-crystal X-ray diffraction and powder X-ray diffraction analyses. Hirshfeld surface analysis and fingerprint plots show that the latent intermolecular pores are rigidified by intermolecular dipole‒dipole and π–π stacking interactions, which determines the remarkable selectivity of molecular recognition. Selective encapsulation of molecules within macrocyclic hosts relies on the pore features and nonmacrocyclic crystals for selective molecular encapsulation have yet been challenging. Here, the authors show that planar tris(phenylisoxazolyl)benzene exhibits a porosity without pore behavior and selectively encapsulate cis- over trans-decalin.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-52526-9</identifier><identifier>PMID: 39333129</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 140/58 ; 639/301/923/3931 ; 639/638/541/961 ; 639/638/541/966 ; Benzene ; Cage molecules ; Chemical bonds ; Crystals ; Decalin ; Dipoles ; Encapsulation ; Fabrication ; Feature recognition ; Humanities and Social Sciences ; Hydrocarbons ; Hydrogen bonding ; Metal-organic frameworks ; multidisciplinary ; Pores ; Porosity ; Porous materials ; Rigidity ; Science ; Science (multidisciplinary) ; Selectivity ; Separation ; Single crystals ; Surface analysis (chemical) ; X ray powder diffraction ; X-ray diffraction ; Zeolites</subject><ispartof>Nature communications, 2024-09, Vol.15 (1), p.8314-10, Article 8314</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-441a92a434d91031678378f63d70f04fe7dffc9a2a57402ee2dc01dd62efb6f43</cites><orcidid>0000-0002-0945-2893 ; 0009-0001-0694-7321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3110561684/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3110561684?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39333129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ono, Yudai</creatorcontrib><creatorcontrib>Hirao, Takehiro</creatorcontrib><creatorcontrib>Kawata, Naomi</creatorcontrib><creatorcontrib>Haino, Takeharu</creatorcontrib><title>Latent porosity of planar tris(phenylisoxazolyl)benzene</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Interest in developing separation systems for chemical entities based on crystalline molecules has provided momentum for the fabrication of synthetic porous materials showing selectivity in molecular encapsulation, such as metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, zeolites, and macrocyclic molecular crystals. Among these, macrocyclic molecular crystals have generated renewed interest for use in separation systems. Selective encapsulation relies on the sizes, shapes, and dimensions of the pores present in the macrocyclic cavities; thus, nonmacrocyclic molecular crystals with high selectivity for molecular encapsulation via porosity-without-pore behaviors have not been studied. Here, we report that planar tris(phenylisoxazolyl)benzene forms porous molecular crystals possessing latent pores exhibiting porosity-without-pore behavior. After exposing the crystals to complementary guest molecules, the latent pores encapsulate cis - and trans -decalin while maintaining the structural rigidity responsible for the high selectivity. The encapsulation via porosity without pores is a kinetic process with remarkable selectivity for cis -decalin over trans -decalin with a cis -/ trans -ratio of 96:4, which is confirmed by single-crystal X-ray diffraction and powder X-ray diffraction analyses. Hirshfeld surface analysis and fingerprint plots show that the latent intermolecular pores are rigidified by intermolecular dipole‒dipole and π–π stacking interactions, which determines the remarkable selectivity of molecular recognition. Selective encapsulation of molecules within macrocyclic hosts relies on the pore features and nonmacrocyclic crystals for selective molecular encapsulation have yet been challenging. Here, the authors show that planar tris(phenylisoxazolyl)benzene exhibits a porosity without pore behavior and selectively encapsulate cis- over trans-decalin.</description><subject>140/131</subject><subject>140/58</subject><subject>639/301/923/3931</subject><subject>639/638/541/961</subject><subject>639/638/541/966</subject><subject>Benzene</subject><subject>Cage molecules</subject><subject>Chemical bonds</subject><subject>Crystals</subject><subject>Decalin</subject><subject>Dipoles</subject><subject>Encapsulation</subject><subject>Fabrication</subject><subject>Feature recognition</subject><subject>Humanities and Social Sciences</subject><subject>Hydrocarbons</subject><subject>Hydrogen bonding</subject><subject>Metal-organic frameworks</subject><subject>multidisciplinary</subject><subject>Pores</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Rigidity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Selectivity</subject><subject>Separation</subject><subject>Single crystals</subject><subject>Surface analysis (chemical)</subject><subject>X ray powder diffraction</subject><subject>X-ray diffraction</subject><subject>Zeolites</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhi0EolXpH-CAVuJSDgHbM7HjE0IVH5VW4gJny4nH26yycbCziO2vx92U0nLAF1ued575eBl7KfhbwaF5l1Gg0hWXWNWylqoyT9ip5CgqoSU8ffA-Yec5b3k5YESD-JydgAEAIc0p02s30zivpphi7ufDKobVNLjRpdWc-nwxXdN4GPocf7mbOByGNy2NNzTSC_YsuCHT-d19xr5_-vjt8ku1_vr56vLDuupQyrlCFM5Ih4DelLaF0g3oJijwmgeOgbQPoTNOulojl0TSd1x4rySFVgWEM3a1cH10WzulfufSwUbX2-NHTBvr0tx3A9naKe4QQ625Qg_oRIsqKJJNW4qourDeL6xp3-7Id2Xu5IZH0MeRsb-2m_jTCoGgDOhCuLgjpPhjT3m2uz53NJSFUdxnC0JwLZsGZJG-_ke6jfs0ll0dVbUSqrkdTy6qrqw_Jwr33Qhub322i8-2-GyPPltTkl49nOM-5Y-rRQCLIJfQuKH0t_Z_sL8BxqOypQ</recordid><startdate>20240927</startdate><enddate>20240927</enddate><creator>Ono, Yudai</creator><creator>Hirao, Takehiro</creator><creator>Kawata, Naomi</creator><creator>Haino, Takeharu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0945-2893</orcidid><orcidid>https://orcid.org/0009-0001-0694-7321</orcidid></search><sort><creationdate>20240927</creationdate><title>Latent porosity of planar tris(phenylisoxazolyl)benzene</title><author>Ono, Yudai ; Hirao, Takehiro ; Kawata, Naomi ; Haino, Takeharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-441a92a434d91031678378f63d70f04fe7dffc9a2a57402ee2dc01dd62efb6f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>140/131</topic><topic>140/58</topic><topic>639/301/923/3931</topic><topic>639/638/541/961</topic><topic>639/638/541/966</topic><topic>Benzene</topic><topic>Cage molecules</topic><topic>Chemical bonds</topic><topic>Crystals</topic><topic>Decalin</topic><topic>Dipoles</topic><topic>Encapsulation</topic><topic>Fabrication</topic><topic>Feature recognition</topic><topic>Humanities and Social Sciences</topic><topic>Hydrocarbons</topic><topic>Hydrogen bonding</topic><topic>Metal-organic frameworks</topic><topic>multidisciplinary</topic><topic>Pores</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Rigidity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Selectivity</topic><topic>Separation</topic><topic>Single crystals</topic><topic>Surface analysis (chemical)</topic><topic>X ray powder diffraction</topic><topic>X-ray diffraction</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ono, Yudai</creatorcontrib><creatorcontrib>Hirao, Takehiro</creatorcontrib><creatorcontrib>Kawata, Naomi</creatorcontrib><creatorcontrib>Haino, Takeharu</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>test</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ono, Yudai</au><au>Hirao, Takehiro</au><au>Kawata, Naomi</au><au>Haino, Takeharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Latent porosity of planar tris(phenylisoxazolyl)benzene</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-09-27</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>8314</spage><epage>10</epage><pages>8314-10</pages><artnum>8314</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Interest in developing separation systems for chemical entities based on crystalline molecules has provided momentum for the fabrication of synthetic porous materials showing selectivity in molecular encapsulation, such as metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, zeolites, and macrocyclic molecular crystals. Among these, macrocyclic molecular crystals have generated renewed interest for use in separation systems. Selective encapsulation relies on the sizes, shapes, and dimensions of the pores present in the macrocyclic cavities; thus, nonmacrocyclic molecular crystals with high selectivity for molecular encapsulation via porosity-without-pore behaviors have not been studied. Here, we report that planar tris(phenylisoxazolyl)benzene forms porous molecular crystals possessing latent pores exhibiting porosity-without-pore behavior. After exposing the crystals to complementary guest molecules, the latent pores encapsulate cis - and trans -decalin while maintaining the structural rigidity responsible for the high selectivity. The encapsulation via porosity without pores is a kinetic process with remarkable selectivity for cis -decalin over trans -decalin with a cis -/ trans -ratio of 96:4, which is confirmed by single-crystal X-ray diffraction and powder X-ray diffraction analyses. Hirshfeld surface analysis and fingerprint plots show that the latent intermolecular pores are rigidified by intermolecular dipole‒dipole and π–π stacking interactions, which determines the remarkable selectivity of molecular recognition. Selective encapsulation of molecules within macrocyclic hosts relies on the pore features and nonmacrocyclic crystals for selective molecular encapsulation have yet been challenging. Here, the authors show that planar tris(phenylisoxazolyl)benzene exhibits a porosity without pore behavior and selectively encapsulate cis- over trans-decalin.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39333129</pmid><doi>10.1038/s41467-024-52526-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0945-2893</orcidid><orcidid>https://orcid.org/0009-0001-0694-7321</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-09, Vol.15 (1), p.8314-10, Article 8314
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5a60a44f57064d34a1b46f6e28bdff65
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 140/131
140/58
639/301/923/3931
639/638/541/961
639/638/541/966
Benzene
Cage molecules
Chemical bonds
Crystals
Decalin
Dipoles
Encapsulation
Fabrication
Feature recognition
Humanities and Social Sciences
Hydrocarbons
Hydrogen bonding
Metal-organic frameworks
multidisciplinary
Pores
Porosity
Porous materials
Rigidity
Science
Science (multidisciplinary)
Selectivity
Separation
Single crystals
Surface analysis (chemical)
X ray powder diffraction
X-ray diffraction
Zeolites
title Latent porosity of planar tris(phenylisoxazolyl)benzene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Latent%20porosity%20of%20planar%20tris(phenylisoxazolyl)benzene&rft.jtitle=Nature%20communications&rft.au=Ono,%20Yudai&rft.date=2024-09-27&rft.volume=15&rft.issue=1&rft.spage=8314&rft.epage=10&rft.pages=8314-10&rft.artnum=8314&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-52526-9&rft_dat=%3Cproquest_doaj_%3E3110561684%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-441a92a434d91031678378f63d70f04fe7dffc9a2a57402ee2dc01dd62efb6f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110561684&rft_id=info:pmid/39333129&rfr_iscdi=true