Loading…

Adaptive Solar Power Forecasting based on Machine Learning Methods

Due to the existence of predicting errors in the power systems, such as solar power, wind power and load demand, the economic performance of power systems can be weakened accordingly. In this paper, we propose an adaptive solar power forecasting (ASPF) method for precise solar power forecasting, whi...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2018-11, Vol.8 (11), p.2224
Main Authors: Wang, Yu, Zou, Hualei, Chen, Xin, Zhang, Fanghua, Chen, Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-e982a275138afbdc03847983c7e6554e324b6c7399b6b70c083fb5bb68ab61513
cites cdi_FETCH-LOGICAL-c361t-e982a275138afbdc03847983c7e6554e324b6c7399b6b70c083fb5bb68ab61513
container_end_page
container_issue 11
container_start_page 2224
container_title Applied sciences
container_volume 8
creator Wang, Yu
Zou, Hualei
Chen, Xin
Zhang, Fanghua
Chen, Jie
description Due to the existence of predicting errors in the power systems, such as solar power, wind power and load demand, the economic performance of power systems can be weakened accordingly. In this paper, we propose an adaptive solar power forecasting (ASPF) method for precise solar power forecasting, which captures the characteristics of forecasting errors and revises the predictions accordingly by combining data clustering, variable selection, and neural network. The proposed ASPF is thus quite general, and does not require any specific original forecasting method. We first propose the framework of ASPF, featuring the data identification and data updating. We then present the applied improved k-means clustering, the least angular regression algorithm, and BPNN, followed by the realization of ASPF, which is shown to improve as more data collected. Simulation results show the effectiveness of the proposed ASPF based on the trace-driven data.
doi_str_mv 10.3390/app8112224
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5a729b491f0b47a181401a73d05f9ab7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5a729b491f0b47a181401a73d05f9ab7</doaj_id><sourcerecordid>2250330758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-e982a275138afbdc03847983c7e6554e324b6c7399b6b70c083fb5bb68ab61513</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqb34Cxa8Cav53CTHWqwWWhTUc5hks-2WulmTreK_d-uKOpcZ3rx5b3gInRN8xZjG19C2ihBKKT9CI4plkTNO5PG_-RRNUtrivjRhiuARupmW0Hb1u8-ewg5i9hg-fMzmIXoHqaubdWYh-TILTbYCt6kbny09xOawWfluE8p0hk4q2CU_-elj9DK_fZ7d58uHu8VsuswdK0iXe60oUCl6Y6hs6TBTXGrFnPSFENwzym3hJNPaFlZihxWrrLC2UGAL0p-N0WLQLQNsTRvrV4ifJkBtvoEQ1wZiV7udNwIk1ZZrUmHLJRBFOCYgWYlFpcHKXuti0GpjeNv71Jlt2Memf99QKjBjWArVsy4HloshpeirX1eCzSFy8xc5-wLJWHDF</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250330758</pqid></control><display><type>article</type><title>Adaptive Solar Power Forecasting based on Machine Learning Methods</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Wang, Yu ; Zou, Hualei ; Chen, Xin ; Zhang, Fanghua ; Chen, Jie</creator><creatorcontrib>Wang, Yu ; Zou, Hualei ; Chen, Xin ; Zhang, Fanghua ; Chen, Jie</creatorcontrib><description>Due to the existence of predicting errors in the power systems, such as solar power, wind power and load demand, the economic performance of power systems can be weakened accordingly. In this paper, we propose an adaptive solar power forecasting (ASPF) method for precise solar power forecasting, which captures the characteristics of forecasting errors and revises the predictions accordingly by combining data clustering, variable selection, and neural network. The proposed ASPF is thus quite general, and does not require any specific original forecasting method. We first propose the framework of ASPF, featuring the data identification and data updating. We then present the applied improved k-means clustering, the least angular regression algorithm, and BPNN, followed by the realization of ASPF, which is shown to improve as more data collected. Simulation results show the effectiveness of the proposed ASPF based on the trace-driven data.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app8112224</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; adaptive solar power forecasting ; Adaptive systems ; Algorithms ; Alternative energy ; Artificial intelligence ; Back propagation ; BPNN ; Clustering ; Computer simulation ; Data mining ; Energy management ; Forecasting ; k-means ; LARS ; Learning algorithms ; Machine learning ; Neural networks ; Researchers ; Solar energy ; Solar power ; Statistical methods ; Variables ; Wind power</subject><ispartof>Applied sciences, 2018-11, Vol.8 (11), p.2224</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-e982a275138afbdc03847983c7e6554e324b6c7399b6b70c083fb5bb68ab61513</citedby><cites>FETCH-LOGICAL-c361t-e982a275138afbdc03847983c7e6554e324b6c7399b6b70c083fb5bb68ab61513</cites><orcidid>0000-0002-0064-7168 ; 0000-0003-4718-9595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2250330758/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2250330758?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zou, Hualei</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Zhang, Fanghua</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><title>Adaptive Solar Power Forecasting based on Machine Learning Methods</title><title>Applied sciences</title><description>Due to the existence of predicting errors in the power systems, such as solar power, wind power and load demand, the economic performance of power systems can be weakened accordingly. In this paper, we propose an adaptive solar power forecasting (ASPF) method for precise solar power forecasting, which captures the characteristics of forecasting errors and revises the predictions accordingly by combining data clustering, variable selection, and neural network. The proposed ASPF is thus quite general, and does not require any specific original forecasting method. We first propose the framework of ASPF, featuring the data identification and data updating. We then present the applied improved k-means clustering, the least angular regression algorithm, and BPNN, followed by the realization of ASPF, which is shown to improve as more data collected. Simulation results show the effectiveness of the proposed ASPF based on the trace-driven data.</description><subject>Accuracy</subject><subject>adaptive solar power forecasting</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Alternative energy</subject><subject>Artificial intelligence</subject><subject>Back propagation</subject><subject>BPNN</subject><subject>Clustering</subject><subject>Computer simulation</subject><subject>Data mining</subject><subject>Energy management</subject><subject>Forecasting</subject><subject>k-means</subject><subject>LARS</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Researchers</subject><subject>Solar energy</subject><subject>Solar power</subject><subject>Statistical methods</subject><subject>Variables</subject><subject>Wind power</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQDaJgqb34Cxa8Cav53CTHWqwWWhTUc5hks-2WulmTreK_d-uKOpcZ3rx5b3gInRN8xZjG19C2ihBKKT9CI4plkTNO5PG_-RRNUtrivjRhiuARupmW0Hb1u8-ewg5i9hg-fMzmIXoHqaubdWYh-TILTbYCt6kbny09xOawWfluE8p0hk4q2CU_-elj9DK_fZ7d58uHu8VsuswdK0iXe60oUCl6Y6hs6TBTXGrFnPSFENwzym3hJNPaFlZihxWrrLC2UGAL0p-N0WLQLQNsTRvrV4ifJkBtvoEQ1wZiV7udNwIk1ZZrUmHLJRBFOCYgWYlFpcHKXuti0GpjeNv71Jlt2Memf99QKjBjWArVsy4HloshpeirX1eCzSFy8xc5-wLJWHDF</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Wang, Yu</creator><creator>Zou, Hualei</creator><creator>Chen, Xin</creator><creator>Zhang, Fanghua</creator><creator>Chen, Jie</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0064-7168</orcidid><orcidid>https://orcid.org/0000-0003-4718-9595</orcidid></search><sort><creationdate>20181101</creationdate><title>Adaptive Solar Power Forecasting based on Machine Learning Methods</title><author>Wang, Yu ; Zou, Hualei ; Chen, Xin ; Zhang, Fanghua ; Chen, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-e982a275138afbdc03847983c7e6554e324b6c7399b6b70c083fb5bb68ab61513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>adaptive solar power forecasting</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Alternative energy</topic><topic>Artificial intelligence</topic><topic>Back propagation</topic><topic>BPNN</topic><topic>Clustering</topic><topic>Computer simulation</topic><topic>Data mining</topic><topic>Energy management</topic><topic>Forecasting</topic><topic>k-means</topic><topic>LARS</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Researchers</topic><topic>Solar energy</topic><topic>Solar power</topic><topic>Statistical methods</topic><topic>Variables</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zou, Hualei</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Zhang, Fanghua</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yu</au><au>Zou, Hualei</au><au>Chen, Xin</au><au>Zhang, Fanghua</au><au>Chen, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Solar Power Forecasting based on Machine Learning Methods</atitle><jtitle>Applied sciences</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>8</volume><issue>11</issue><spage>2224</spage><pages>2224-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Due to the existence of predicting errors in the power systems, such as solar power, wind power and load demand, the economic performance of power systems can be weakened accordingly. In this paper, we propose an adaptive solar power forecasting (ASPF) method for precise solar power forecasting, which captures the characteristics of forecasting errors and revises the predictions accordingly by combining data clustering, variable selection, and neural network. The proposed ASPF is thus quite general, and does not require any specific original forecasting method. We first propose the framework of ASPF, featuring the data identification and data updating. We then present the applied improved k-means clustering, the least angular regression algorithm, and BPNN, followed by the realization of ASPF, which is shown to improve as more data collected. Simulation results show the effectiveness of the proposed ASPF based on the trace-driven data.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app8112224</doi><orcidid>https://orcid.org/0000-0002-0064-7168</orcidid><orcidid>https://orcid.org/0000-0003-4718-9595</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2018-11, Vol.8 (11), p.2224
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5a729b491f0b47a181401a73d05f9ab7
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Accuracy
adaptive solar power forecasting
Adaptive systems
Algorithms
Alternative energy
Artificial intelligence
Back propagation
BPNN
Clustering
Computer simulation
Data mining
Energy management
Forecasting
k-means
LARS
Learning algorithms
Machine learning
Neural networks
Researchers
Solar energy
Solar power
Statistical methods
Variables
Wind power
title Adaptive Solar Power Forecasting based on Machine Learning Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Solar%20Power%20Forecasting%20based%20on%20Machine%20Learning%20Methods&rft.jtitle=Applied%20sciences&rft.au=Wang,%20Yu&rft.date=2018-11-01&rft.volume=8&rft.issue=11&rft.spage=2224&rft.pages=2224-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app8112224&rft_dat=%3Cproquest_doaj_%3E2250330758%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-e982a275138afbdc03847983c7e6554e324b6c7399b6b70c083fb5bb68ab61513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2250330758&rft_id=info:pmid/&rfr_iscdi=true