Loading…
Adaptive Solar Power Forecasting based on Machine Learning Methods
Due to the existence of predicting errors in the power systems, such as solar power, wind power and load demand, the economic performance of power systems can be weakened accordingly. In this paper, we propose an adaptive solar power forecasting (ASPF) method for precise solar power forecasting, whi...
Saved in:
Published in: | Applied sciences 2018-11, Vol.8 (11), p.2224 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-e982a275138afbdc03847983c7e6554e324b6c7399b6b70c083fb5bb68ab61513 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-e982a275138afbdc03847983c7e6554e324b6c7399b6b70c083fb5bb68ab61513 |
container_end_page | |
container_issue | 11 |
container_start_page | 2224 |
container_title | Applied sciences |
container_volume | 8 |
creator | Wang, Yu Zou, Hualei Chen, Xin Zhang, Fanghua Chen, Jie |
description | Due to the existence of predicting errors in the power systems, such as solar power, wind power and load demand, the economic performance of power systems can be weakened accordingly. In this paper, we propose an adaptive solar power forecasting (ASPF) method for precise solar power forecasting, which captures the characteristics of forecasting errors and revises the predictions accordingly by combining data clustering, variable selection, and neural network. The proposed ASPF is thus quite general, and does not require any specific original forecasting method. We first propose the framework of ASPF, featuring the data identification and data updating. We then present the applied improved k-means clustering, the least angular regression algorithm, and BPNN, followed by the realization of ASPF, which is shown to improve as more data collected. Simulation results show the effectiveness of the proposed ASPF based on the trace-driven data. |
doi_str_mv | 10.3390/app8112224 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5a729b491f0b47a181401a73d05f9ab7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5a729b491f0b47a181401a73d05f9ab7</doaj_id><sourcerecordid>2250330758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-e982a275138afbdc03847983c7e6554e324b6c7399b6b70c083fb5bb68ab61513</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqb34Cxa8Cav53CTHWqwWWhTUc5hks-2WulmTreK_d-uKOpcZ3rx5b3gInRN8xZjG19C2ihBKKT9CI4plkTNO5PG_-RRNUtrivjRhiuARupmW0Hb1u8-ewg5i9hg-fMzmIXoHqaubdWYh-TILTbYCt6kbny09xOawWfluE8p0hk4q2CU_-elj9DK_fZ7d58uHu8VsuswdK0iXe60oUCl6Y6hs6TBTXGrFnPSFENwzym3hJNPaFlZihxWrrLC2UGAL0p-N0WLQLQNsTRvrV4ifJkBtvoEQ1wZiV7udNwIk1ZZrUmHLJRBFOCYgWYlFpcHKXuti0GpjeNv71Jlt2Memf99QKjBjWArVsy4HloshpeirX1eCzSFy8xc5-wLJWHDF</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250330758</pqid></control><display><type>article</type><title>Adaptive Solar Power Forecasting based on Machine Learning Methods</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Wang, Yu ; Zou, Hualei ; Chen, Xin ; Zhang, Fanghua ; Chen, Jie</creator><creatorcontrib>Wang, Yu ; Zou, Hualei ; Chen, Xin ; Zhang, Fanghua ; Chen, Jie</creatorcontrib><description>Due to the existence of predicting errors in the power systems, such as solar power, wind power and load demand, the economic performance of power systems can be weakened accordingly. In this paper, we propose an adaptive solar power forecasting (ASPF) method for precise solar power forecasting, which captures the characteristics of forecasting errors and revises the predictions accordingly by combining data clustering, variable selection, and neural network. The proposed ASPF is thus quite general, and does not require any specific original forecasting method. We first propose the framework of ASPF, featuring the data identification and data updating. We then present the applied improved k-means clustering, the least angular regression algorithm, and BPNN, followed by the realization of ASPF, which is shown to improve as more data collected. Simulation results show the effectiveness of the proposed ASPF based on the trace-driven data.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app8112224</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; adaptive solar power forecasting ; Adaptive systems ; Algorithms ; Alternative energy ; Artificial intelligence ; Back propagation ; BPNN ; Clustering ; Computer simulation ; Data mining ; Energy management ; Forecasting ; k-means ; LARS ; Learning algorithms ; Machine learning ; Neural networks ; Researchers ; Solar energy ; Solar power ; Statistical methods ; Variables ; Wind power</subject><ispartof>Applied sciences, 2018-11, Vol.8 (11), p.2224</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-e982a275138afbdc03847983c7e6554e324b6c7399b6b70c083fb5bb68ab61513</citedby><cites>FETCH-LOGICAL-c361t-e982a275138afbdc03847983c7e6554e324b6c7399b6b70c083fb5bb68ab61513</cites><orcidid>0000-0002-0064-7168 ; 0000-0003-4718-9595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2250330758/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2250330758?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zou, Hualei</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Zhang, Fanghua</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><title>Adaptive Solar Power Forecasting based on Machine Learning Methods</title><title>Applied sciences</title><description>Due to the existence of predicting errors in the power systems, such as solar power, wind power and load demand, the economic performance of power systems can be weakened accordingly. In this paper, we propose an adaptive solar power forecasting (ASPF) method for precise solar power forecasting, which captures the characteristics of forecasting errors and revises the predictions accordingly by combining data clustering, variable selection, and neural network. The proposed ASPF is thus quite general, and does not require any specific original forecasting method. We first propose the framework of ASPF, featuring the data identification and data updating. We then present the applied improved k-means clustering, the least angular regression algorithm, and BPNN, followed by the realization of ASPF, which is shown to improve as more data collected. Simulation results show the effectiveness of the proposed ASPF based on the trace-driven data.</description><subject>Accuracy</subject><subject>adaptive solar power forecasting</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Alternative energy</subject><subject>Artificial intelligence</subject><subject>Back propagation</subject><subject>BPNN</subject><subject>Clustering</subject><subject>Computer simulation</subject><subject>Data mining</subject><subject>Energy management</subject><subject>Forecasting</subject><subject>k-means</subject><subject>LARS</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Researchers</subject><subject>Solar energy</subject><subject>Solar power</subject><subject>Statistical methods</subject><subject>Variables</subject><subject>Wind power</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQDaJgqb34Cxa8Cav53CTHWqwWWhTUc5hks-2WulmTreK_d-uKOpcZ3rx5b3gInRN8xZjG19C2ihBKKT9CI4plkTNO5PG_-RRNUtrivjRhiuARupmW0Hb1u8-ewg5i9hg-fMzmIXoHqaubdWYh-TILTbYCt6kbny09xOawWfluE8p0hk4q2CU_-elj9DK_fZ7d58uHu8VsuswdK0iXe60oUCl6Y6hs6TBTXGrFnPSFENwzym3hJNPaFlZihxWrrLC2UGAL0p-N0WLQLQNsTRvrV4ifJkBtvoEQ1wZiV7udNwIk1ZZrUmHLJRBFOCYgWYlFpcHKXuti0GpjeNv71Jlt2Memf99QKjBjWArVsy4HloshpeirX1eCzSFy8xc5-wLJWHDF</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Wang, Yu</creator><creator>Zou, Hualei</creator><creator>Chen, Xin</creator><creator>Zhang, Fanghua</creator><creator>Chen, Jie</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0064-7168</orcidid><orcidid>https://orcid.org/0000-0003-4718-9595</orcidid></search><sort><creationdate>20181101</creationdate><title>Adaptive Solar Power Forecasting based on Machine Learning Methods</title><author>Wang, Yu ; Zou, Hualei ; Chen, Xin ; Zhang, Fanghua ; Chen, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-e982a275138afbdc03847983c7e6554e324b6c7399b6b70c083fb5bb68ab61513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>adaptive solar power forecasting</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Alternative energy</topic><topic>Artificial intelligence</topic><topic>Back propagation</topic><topic>BPNN</topic><topic>Clustering</topic><topic>Computer simulation</topic><topic>Data mining</topic><topic>Energy management</topic><topic>Forecasting</topic><topic>k-means</topic><topic>LARS</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Researchers</topic><topic>Solar energy</topic><topic>Solar power</topic><topic>Statistical methods</topic><topic>Variables</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zou, Hualei</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Zhang, Fanghua</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yu</au><au>Zou, Hualei</au><au>Chen, Xin</au><au>Zhang, Fanghua</au><au>Chen, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Solar Power Forecasting based on Machine Learning Methods</atitle><jtitle>Applied sciences</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>8</volume><issue>11</issue><spage>2224</spage><pages>2224-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Due to the existence of predicting errors in the power systems, such as solar power, wind power and load demand, the economic performance of power systems can be weakened accordingly. In this paper, we propose an adaptive solar power forecasting (ASPF) method for precise solar power forecasting, which captures the characteristics of forecasting errors and revises the predictions accordingly by combining data clustering, variable selection, and neural network. The proposed ASPF is thus quite general, and does not require any specific original forecasting method. We first propose the framework of ASPF, featuring the data identification and data updating. We then present the applied improved k-means clustering, the least angular regression algorithm, and BPNN, followed by the realization of ASPF, which is shown to improve as more data collected. Simulation results show the effectiveness of the proposed ASPF based on the trace-driven data.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app8112224</doi><orcidid>https://orcid.org/0000-0002-0064-7168</orcidid><orcidid>https://orcid.org/0000-0003-4718-9595</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2018-11, Vol.8 (11), p.2224 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5a729b491f0b47a181401a73d05f9ab7 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Accuracy adaptive solar power forecasting Adaptive systems Algorithms Alternative energy Artificial intelligence Back propagation BPNN Clustering Computer simulation Data mining Energy management Forecasting k-means LARS Learning algorithms Machine learning Neural networks Researchers Solar energy Solar power Statistical methods Variables Wind power |
title | Adaptive Solar Power Forecasting based on Machine Learning Methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Solar%20Power%20Forecasting%20based%20on%20Machine%20Learning%20Methods&rft.jtitle=Applied%20sciences&rft.au=Wang,%20Yu&rft.date=2018-11-01&rft.volume=8&rft.issue=11&rft.spage=2224&rft.pages=2224-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app8112224&rft_dat=%3Cproquest_doaj_%3E2250330758%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-e982a275138afbdc03847983c7e6554e324b6c7399b6b70c083fb5bb68ab61513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2250330758&rft_id=info:pmid/&rfr_iscdi=true |