Loading…

Synthesis and characterization of manganese ferrite from low grade manganese ore through solid state reaction route

Manganese ferrite spinel has been synthesized by using low grade manganese ore and ferric oxide as sources of manganese oxide and iron oxide through solid state reaction route by taking manganese and iron mole ratio of 1:2 respectively. The impact of sintering temperature on phase composition and pa...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-08, Vol.11 (1), p.16190-16190, Article 16190
Main Authors: Ahmad, Salar, Ali, Sajjad, Ullah, Ikram, Zobaer, M. S., Albakri, Ashwag, Muhammad, Taseer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Manganese ferrite spinel has been synthesized by using low grade manganese ore and ferric oxide as sources of manganese oxide and iron oxide through solid state reaction route by taking manganese and iron mole ratio of 1:2 respectively. The impact of sintering temperature on phase composition and particle size is investigated. Similarly, the impact of frequency on dielectric constant, dielectric loss, AC (alternating current) conductivity and tangent losses is also investigated. The results shows the presence of spinel structure manganese ferrite (MnFe 2 O 4 ) as the major phase for the sample sintered at 1200 °C. It has been established that the crystallite size increase with rise in sintering temperature. The surface morphology of the sample sintered at 1200 °C show pyramidal and triangular shape grains. The dielectric constant (εʹ) and dielectric losses (εʹʹ) were observed to decrease with increasing the sintering temperature and frequency. Furthermore, the AC (alternating current) conductivity was found to rise with rise in applied frequency. On the other hand, the tangent losses falls considerably with rise in applied frequency.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-95625-z