Loading…
EPIGENE: genome-wide transcription unit annotation using a multivariate probabilistic model of histone modifications
Understanding the transcriptome is critical for explaining the functional as well as regulatory roles of genomic regions. Current methods for the identification of transcription units (TUs) use RNA-seq that, however, require large quantities of mRNA rendering the identification of inherently unstabl...
Saved in:
Published in: | Epigenetics & chromatin 2020-04, Vol.13 (1), p.20-20, Article 20 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c597t-87f36e2ac347035b2045643ef5ab5383849abbc1f3d83b7cc56618c0c9bde8d23 |
---|---|
cites | cdi_FETCH-LOGICAL-c597t-87f36e2ac347035b2045643ef5ab5383849abbc1f3d83b7cc56618c0c9bde8d23 |
container_end_page | 20 |
container_issue | 1 |
container_start_page | 20 |
container_title | Epigenetics & chromatin |
container_volume | 13 |
creator | Sahu, Anshupa Li, Na Dunkel, Ilona Chung, Ho-Ryun |
description | Understanding the transcriptome is critical for explaining the functional as well as regulatory roles of genomic regions. Current methods for the identification of transcription units (TUs) use RNA-seq that, however, require large quantities of mRNA rendering the identification of inherently unstable TUs, e.g. miRNA precursors, difficult. This problem can be alleviated by chromatin-based approaches due to a correlation between histone modifications and transcription.
Here, we introduce EPIGENE, a novel chromatin segmentation method for the identification of active TUs using transcription-associated histone modifications. Unlike the existing chromatin segmentation approaches, EPIGENE uses a constrained, semi-supervised multivariate hidden Markov model (HMM) that models the observed combination of histone modifications using a product of independent Bernoulli random variables, to identify active TUs. Our results show that EPIGENE can identify genome-wide TUs in an unbiased manner. EPIGENE-predicted TUs show an enrichment of RNA Polymerase II at the transcription start site and in gene body indicating that they are indeed transcribed. Comprehensive validation using existing annotations revealed that 93% of EPIGENE TUs can be explained by existing gene annotations and 5% of EPIGENE TUs in HepG2 can be explained by microRNA annotations. EPIGENE outperformed the existing RNA-seq-based approaches in TU prediction precision across human cell lines. Finally, we identified 232 novel TUs in K562 and 43 novel cell-specific TUs all of which were supported by RNA Polymerase II ChIP-seq and Nascent RNA-seq data.
We demonstrate the applicability of EPIGENE to identify genome-wide active TUs and to provide valuable information about unannotated TUs. EPIGENE is an open-source method and is freely available at: https://github.com/imbbLab/EPIGENE. |
doi_str_mv | 10.1186/s13072-020-00341-z |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5a9649fe2a0b4a60b7346e0c0a2aae48</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627330190</galeid><doaj_id>oai_doaj_org_article_5a9649fe2a0b4a60b7346e0c0a2aae48</doaj_id><sourcerecordid>A627330190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-87f36e2ac347035b2045643ef5ab5383849abbc1f3d83b7cc56618c0c9bde8d23</originalsourceid><addsrcrecordid>eNptkktv1DAUhSMEog_4AyxQJDZ0keJH_AgLpKoaykgVIB5r68ZxUo8Se2o7Bfrr8cyU0kEoC8fX3z22j09RvMDoFGPJ30RMkSAVIqhCiNa4un1UHGLBeCUbyh4_-D8ojmJcIcSJrNHT4oASwuuG4sMiLT4vLxYfF2_LwTg_meqH7UyZAriog10n6105O5tKcM4n2M2jdUMJ5TSPyd5AsJBMuQ6-hdaONiary8l3Zix9X17luXdmU7C91VuB-Kx40sMYzfO78bj4_n7x7fxDdfnpYnl-dllp1ohUSdFTbghoWgtEWUtQzXhNTc-gZVRSWTfQthr3tJO0FVozzrHUSDdtZ2RH6HGx3Ol2HlZqHewE4ZfyYNW24MOgIOTjjkYxaLIjfd4NtTVw1Apac4M0AgJgapm13u201nM7mU4bl00a90T3V5y9UoO_UQJTQeTmMK_vBIK_nk1MarJRm3EEZ_wcFaFScIZYQzP66h905efgslWZavKrZ4j9pQbIF7Cu93lfvRFVZ5wIShFuUKZO_0PlrzOT1flpepvrew0new2ZSeZnGmCOUS2_ftlnyY7VwccYTH_vB0Zqk1G1y6jKGVXbjKrb3PTyoZP3LX9CSX8DyrXh8g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391305935</pqid></control><display><type>article</type><title>EPIGENE: genome-wide transcription unit annotation using a multivariate probabilistic model of histone modifications</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Sahu, Anshupa ; Li, Na ; Dunkel, Ilona ; Chung, Ho-Ryun</creator><creatorcontrib>Sahu, Anshupa ; Li, Na ; Dunkel, Ilona ; Chung, Ho-Ryun</creatorcontrib><description>Understanding the transcriptome is critical for explaining the functional as well as regulatory roles of genomic regions. Current methods for the identification of transcription units (TUs) use RNA-seq that, however, require large quantities of mRNA rendering the identification of inherently unstable TUs, e.g. miRNA precursors, difficult. This problem can be alleviated by chromatin-based approaches due to a correlation between histone modifications and transcription.
Here, we introduce EPIGENE, a novel chromatin segmentation method for the identification of active TUs using transcription-associated histone modifications. Unlike the existing chromatin segmentation approaches, EPIGENE uses a constrained, semi-supervised multivariate hidden Markov model (HMM) that models the observed combination of histone modifications using a product of independent Bernoulli random variables, to identify active TUs. Our results show that EPIGENE can identify genome-wide TUs in an unbiased manner. EPIGENE-predicted TUs show an enrichment of RNA Polymerase II at the transcription start site and in gene body indicating that they are indeed transcribed. Comprehensive validation using existing annotations revealed that 93% of EPIGENE TUs can be explained by existing gene annotations and 5% of EPIGENE TUs in HepG2 can be explained by microRNA annotations. EPIGENE outperformed the existing RNA-seq-based approaches in TU prediction precision across human cell lines. Finally, we identified 232 novel TUs in K562 and 43 novel cell-specific TUs all of which were supported by RNA Polymerase II ChIP-seq and Nascent RNA-seq data.
We demonstrate the applicability of EPIGENE to identify genome-wide active TUs and to provide valuable information about unannotated TUs. EPIGENE is an open-source method and is freely available at: https://github.com/imbbLab/EPIGENE.</description><identifier>ISSN: 1756-8935</identifier><identifier>EISSN: 1756-8935</identifier><identifier>DOI: 10.1186/s13072-020-00341-z</identifier><identifier>PMID: 32264931</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Annotations ; Cell lines ; Cells (Biology) ; Chromatin ; Chromatin Immunoprecipitation Sequencing - methods ; DNA-directed RNA polymerase ; Epigenetic inheritance ; Epigenetics ; Epigenomics - methods ; Gene expression ; Genes ; Genetic aspects ; Genomes ; Genomics ; Hep G2 Cells ; Hidden Markov model ; Histone Code ; Histone modifications ; Humans ; Identification ; K562 Cells ; Markov Chains ; Markov processes ; Messenger RNA ; Methodology ; MicroRNA ; MicroRNAs ; miRNA ; Molecular Sequence Annotation - methods ; Phosphorylation ; RNA polymerase ; Segmentation ; Software ; Transcript identification ; Transcription ; Transcription (Genetics) ; Transcription Initiation Site ; Transcriptome</subject><ispartof>Epigenetics & chromatin, 2020-04, Vol.13 (1), p.20-20, Article 20</ispartof><rights>COPYRIGHT 2020 BioMed Central Ltd.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c597t-87f36e2ac347035b2045643ef5ab5383849abbc1f3d83b7cc56618c0c9bde8d23</citedby><cites>FETCH-LOGICAL-c597t-87f36e2ac347035b2045643ef5ab5383849abbc1f3d83b7cc56618c0c9bde8d23</cites><orcidid>0000-0002-4132-0911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7137282/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2391305935?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32264931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sahu, Anshupa</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Dunkel, Ilona</creatorcontrib><creatorcontrib>Chung, Ho-Ryun</creatorcontrib><title>EPIGENE: genome-wide transcription unit annotation using a multivariate probabilistic model of histone modifications</title><title>Epigenetics & chromatin</title><addtitle>Epigenetics Chromatin</addtitle><description>Understanding the transcriptome is critical for explaining the functional as well as regulatory roles of genomic regions. Current methods for the identification of transcription units (TUs) use RNA-seq that, however, require large quantities of mRNA rendering the identification of inherently unstable TUs, e.g. miRNA precursors, difficult. This problem can be alleviated by chromatin-based approaches due to a correlation between histone modifications and transcription.
Here, we introduce EPIGENE, a novel chromatin segmentation method for the identification of active TUs using transcription-associated histone modifications. Unlike the existing chromatin segmentation approaches, EPIGENE uses a constrained, semi-supervised multivariate hidden Markov model (HMM) that models the observed combination of histone modifications using a product of independent Bernoulli random variables, to identify active TUs. Our results show that EPIGENE can identify genome-wide TUs in an unbiased manner. EPIGENE-predicted TUs show an enrichment of RNA Polymerase II at the transcription start site and in gene body indicating that they are indeed transcribed. Comprehensive validation using existing annotations revealed that 93% of EPIGENE TUs can be explained by existing gene annotations and 5% of EPIGENE TUs in HepG2 can be explained by microRNA annotations. EPIGENE outperformed the existing RNA-seq-based approaches in TU prediction precision across human cell lines. Finally, we identified 232 novel TUs in K562 and 43 novel cell-specific TUs all of which were supported by RNA Polymerase II ChIP-seq and Nascent RNA-seq data.
We demonstrate the applicability of EPIGENE to identify genome-wide active TUs and to provide valuable information about unannotated TUs. EPIGENE is an open-source method and is freely available at: https://github.com/imbbLab/EPIGENE.</description><subject>Analysis</subject><subject>Annotations</subject><subject>Cell lines</subject><subject>Cells (Biology)</subject><subject>Chromatin</subject><subject>Chromatin Immunoprecipitation Sequencing - methods</subject><subject>DNA-directed RNA polymerase</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Epigenomics - methods</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hep G2 Cells</subject><subject>Hidden Markov model</subject><subject>Histone Code</subject><subject>Histone modifications</subject><subject>Humans</subject><subject>Identification</subject><subject>K562 Cells</subject><subject>Markov Chains</subject><subject>Markov processes</subject><subject>Messenger RNA</subject><subject>Methodology</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>Molecular Sequence Annotation - methods</subject><subject>Phosphorylation</subject><subject>RNA polymerase</subject><subject>Segmentation</subject><subject>Software</subject><subject>Transcript identification</subject><subject>Transcription</subject><subject>Transcription (Genetics)</subject><subject>Transcription Initiation Site</subject><subject>Transcriptome</subject><issn>1756-8935</issn><issn>1756-8935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAUhSMEog_4AyxQJDZ0keJH_AgLpKoaykgVIB5r68ZxUo8Se2o7Bfrr8cyU0kEoC8fX3z22j09RvMDoFGPJ30RMkSAVIqhCiNa4un1UHGLBeCUbyh4_-D8ojmJcIcSJrNHT4oASwuuG4sMiLT4vLxYfF2_LwTg_meqH7UyZAriog10n6105O5tKcM4n2M2jdUMJ5TSPyd5AsJBMuQ6-hdaONiary8l3Zix9X17luXdmU7C91VuB-Kx40sMYzfO78bj4_n7x7fxDdfnpYnl-dllp1ohUSdFTbghoWgtEWUtQzXhNTc-gZVRSWTfQthr3tJO0FVozzrHUSDdtZ2RH6HGx3Ol2HlZqHewE4ZfyYNW24MOgIOTjjkYxaLIjfd4NtTVw1Apac4M0AgJgapm13u201nM7mU4bl00a90T3V5y9UoO_UQJTQeTmMK_vBIK_nk1MarJRm3EEZ_wcFaFScIZYQzP66h905efgslWZavKrZ4j9pQbIF7Cu93lfvRFVZ5wIShFuUKZO_0PlrzOT1flpepvrew0new2ZSeZnGmCOUS2_ftlnyY7VwccYTH_vB0Zqk1G1y6jKGVXbjKrb3PTyoZP3LX9CSX8DyrXh8g</recordid><startdate>20200407</startdate><enddate>20200407</enddate><creator>Sahu, Anshupa</creator><creator>Li, Na</creator><creator>Dunkel, Ilona</creator><creator>Chung, Ho-Ryun</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4132-0911</orcidid></search><sort><creationdate>20200407</creationdate><title>EPIGENE: genome-wide transcription unit annotation using a multivariate probabilistic model of histone modifications</title><author>Sahu, Anshupa ; Li, Na ; Dunkel, Ilona ; Chung, Ho-Ryun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-87f36e2ac347035b2045643ef5ab5383849abbc1f3d83b7cc56618c0c9bde8d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Annotations</topic><topic>Cell lines</topic><topic>Cells (Biology)</topic><topic>Chromatin</topic><topic>Chromatin Immunoprecipitation Sequencing - methods</topic><topic>DNA-directed RNA polymerase</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Epigenomics - methods</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hep G2 Cells</topic><topic>Hidden Markov model</topic><topic>Histone Code</topic><topic>Histone modifications</topic><topic>Humans</topic><topic>Identification</topic><topic>K562 Cells</topic><topic>Markov Chains</topic><topic>Markov processes</topic><topic>Messenger RNA</topic><topic>Methodology</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>Molecular Sequence Annotation - methods</topic><topic>Phosphorylation</topic><topic>RNA polymerase</topic><topic>Segmentation</topic><topic>Software</topic><topic>Transcript identification</topic><topic>Transcription</topic><topic>Transcription (Genetics)</topic><topic>Transcription Initiation Site</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahu, Anshupa</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Dunkel, Ilona</creatorcontrib><creatorcontrib>Chung, Ho-Ryun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>PHMC-Proquest健康医学期刊库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Epigenetics & chromatin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahu, Anshupa</au><au>Li, Na</au><au>Dunkel, Ilona</au><au>Chung, Ho-Ryun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EPIGENE: genome-wide transcription unit annotation using a multivariate probabilistic model of histone modifications</atitle><jtitle>Epigenetics & chromatin</jtitle><addtitle>Epigenetics Chromatin</addtitle><date>2020-04-07</date><risdate>2020</risdate><volume>13</volume><issue>1</issue><spage>20</spage><epage>20</epage><pages>20-20</pages><artnum>20</artnum><issn>1756-8935</issn><eissn>1756-8935</eissn><abstract>Understanding the transcriptome is critical for explaining the functional as well as regulatory roles of genomic regions. Current methods for the identification of transcription units (TUs) use RNA-seq that, however, require large quantities of mRNA rendering the identification of inherently unstable TUs, e.g. miRNA precursors, difficult. This problem can be alleviated by chromatin-based approaches due to a correlation between histone modifications and transcription.
Here, we introduce EPIGENE, a novel chromatin segmentation method for the identification of active TUs using transcription-associated histone modifications. Unlike the existing chromatin segmentation approaches, EPIGENE uses a constrained, semi-supervised multivariate hidden Markov model (HMM) that models the observed combination of histone modifications using a product of independent Bernoulli random variables, to identify active TUs. Our results show that EPIGENE can identify genome-wide TUs in an unbiased manner. EPIGENE-predicted TUs show an enrichment of RNA Polymerase II at the transcription start site and in gene body indicating that they are indeed transcribed. Comprehensive validation using existing annotations revealed that 93% of EPIGENE TUs can be explained by existing gene annotations and 5% of EPIGENE TUs in HepG2 can be explained by microRNA annotations. EPIGENE outperformed the existing RNA-seq-based approaches in TU prediction precision across human cell lines. Finally, we identified 232 novel TUs in K562 and 43 novel cell-specific TUs all of which were supported by RNA Polymerase II ChIP-seq and Nascent RNA-seq data.
We demonstrate the applicability of EPIGENE to identify genome-wide active TUs and to provide valuable information about unannotated TUs. EPIGENE is an open-source method and is freely available at: https://github.com/imbbLab/EPIGENE.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>32264931</pmid><doi>10.1186/s13072-020-00341-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4132-0911</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1756-8935 |
ispartof | Epigenetics & chromatin, 2020-04, Vol.13 (1), p.20-20, Article 20 |
issn | 1756-8935 1756-8935 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5a9649fe2a0b4a60b7346e0c0a2aae48 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Analysis Annotations Cell lines Cells (Biology) Chromatin Chromatin Immunoprecipitation Sequencing - methods DNA-directed RNA polymerase Epigenetic inheritance Epigenetics Epigenomics - methods Gene expression Genes Genetic aspects Genomes Genomics Hep G2 Cells Hidden Markov model Histone Code Histone modifications Humans Identification K562 Cells Markov Chains Markov processes Messenger RNA Methodology MicroRNA MicroRNAs miRNA Molecular Sequence Annotation - methods Phosphorylation RNA polymerase Segmentation Software Transcript identification Transcription Transcription (Genetics) Transcription Initiation Site Transcriptome |
title | EPIGENE: genome-wide transcription unit annotation using a multivariate probabilistic model of histone modifications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EPIGENE:%20genome-wide%20transcription%20unit%20annotation%20using%20a%20multivariate%20probabilistic%20model%20of%20histone%20modifications&rft.jtitle=Epigenetics%20&%20chromatin&rft.au=Sahu,%20Anshupa&rft.date=2020-04-07&rft.volume=13&rft.issue=1&rft.spage=20&rft.epage=20&rft.pages=20-20&rft.artnum=20&rft.issn=1756-8935&rft.eissn=1756-8935&rft_id=info:doi/10.1186/s13072-020-00341-z&rft_dat=%3Cgale_doaj_%3EA627330190%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c597t-87f36e2ac347035b2045643ef5ab5383849abbc1f3d83b7cc56618c0c9bde8d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2391305935&rft_id=info:pmid/32264931&rft_galeid=A627330190&rfr_iscdi=true |