Loading…

Workload-capacity imbalances and their impact on self-management complexity in patients with multimorbidity: a multicenter cross-sectional study

Multimorbidity is increasing globally, emphasizing the need for effective self-management strategies. The Cumulative Complexity Model (CuCoM) offers a unique perspective on understanding self-management based on workload and capacity. This study aims to validate the CuCoM in multimorbid patients and...

Full description

Saved in:
Bibliographic Details
Published in:Annals of medicine (Helsinki) 2025-12, Vol.57 (1), p.2451195
Main Authors: Zhao, Binyu, Fu, Yujia, Wu, Jingjie, Xue, Erxu, Lai, Chuyang, Chen, Dandan, Wu, Qiwei, Yu, Jianing, Wu, Qiaoyu, Ye, Zhihong, Shao, Jing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2247-3c7ed73ccf9693d4d77666e9fe2fb08effcb45a5d633d51142a290f0bc3c4ca23
container_end_page
container_issue 1
container_start_page 2451195
container_title Annals of medicine (Helsinki)
container_volume 57
creator Zhao, Binyu
Fu, Yujia
Wu, Jingjie
Xue, Erxu
Lai, Chuyang
Chen, Dandan
Wu, Qiwei
Yu, Jianing
Wu, Qiaoyu
Ye, Zhihong
Shao, Jing
description Multimorbidity is increasing globally, emphasizing the need for effective self-management strategies. The Cumulative Complexity Model (CuCoM) offers a unique perspective on understanding self-management based on workload and capacity. This study aims to validate the CuCoM in multimorbid patients and identify tailored predictors of self-management. This multicenter cross-sectional survey recruited 1920 multimorbid patients in five primary health centres and four hospitals in China. The questionnaire assessed workload (drug intake, doctor visits and follow-up, disruption in life, and health problems), capacity (social, environmental, financial, physical, and psychological), and self-management. Data were analyzed using latent profile analysis, chi-square, multivariate linear regression, and network analysis. d Patients were classified into four profiles: low workload-low capacity (10.2%), high workload-low capacity (7.5%), low workload-high capacity (64.6%), and high workload-high capacity (17.7%). Patients with low workload and high capacity exhibited better self-management (β = 0.271,  
doi_str_mv 10.1080/07853890.2025.2451195
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5a9793432ec24d3497f47715dad5015e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5a9793432ec24d3497f47715dad5015e</doaj_id><sourcerecordid>3156802061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2247-3c7ed73ccf9693d4d77666e9fe2fb08effcb45a5d633d51142a290f0bc3c4ca23</originalsourceid><addsrcrecordid>eNpVUsuO0zAUjRCIKQOfAPKSTYqfccwGoRGPkUZiA2Jp3dg3rYckLnYK9C_4ZJy2M2JWls495_g-TlW9ZHTNaEvfUN0q0Rq65pSrNZeKMaMeVSsmGlVz2tDH1Wrh1AvponqW8y2llGtGn1YXwrRcMCNW1d_vMf0YIvjawQ5cmA8kjB0MMDnMBCZP5i2GVMBSnUmcSMahr0eYYIMjTjNxcdwN-OeonMgO5lDQTH6HeUvG_TCHMaYu-FJ_S-CEuMLARFyKOdcZ3RziBAPJ894fnldPehgyvji_l9W3jx--Xn2ub758ur56f1M7zqWuhdPotXCuN40RXnqtm6ZB0yPvO9pi37tOKlC-EcKX3UgO3NCedk446YCLy-r65Osj3NpdCiOkg40Q7BGIaWMhlVYHtAqMNkIKjo5LL6TRvdSaKQ9eUaaweL07ee323Yh-GS_B8MD0YWUKW7uJvyxjWhpGdXF4fXZI8ece82zHkB0O5Q4Y99kKppqWlrOyQlUn6nF9Cfv7fxi1SzTsXTTsEg17jkbRvfq_yXvVXRbEPytZuO8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3156802061</pqid></control><display><type>article</type><title>Workload-capacity imbalances and their impact on self-management complexity in patients with multimorbidity: a multicenter cross-sectional study</title><source>Taylor &amp; Francis Open Access</source><source>PubMed Central</source><creator>Zhao, Binyu ; Fu, Yujia ; Wu, Jingjie ; Xue, Erxu ; Lai, Chuyang ; Chen, Dandan ; Wu, Qiwei ; Yu, Jianing ; Wu, Qiaoyu ; Ye, Zhihong ; Shao, Jing</creator><creatorcontrib>Zhao, Binyu ; Fu, Yujia ; Wu, Jingjie ; Xue, Erxu ; Lai, Chuyang ; Chen, Dandan ; Wu, Qiwei ; Yu, Jianing ; Wu, Qiaoyu ; Ye, Zhihong ; Shao, Jing</creatorcontrib><description>Multimorbidity is increasing globally, emphasizing the need for effective self-management strategies. The Cumulative Complexity Model (CuCoM) offers a unique perspective on understanding self-management based on workload and capacity. This study aims to validate the CuCoM in multimorbid patients and identify tailored predictors of self-management. This multicenter cross-sectional survey recruited 1920 multimorbid patients in five primary health centres and four hospitals in China. The questionnaire assessed workload (drug intake, doctor visits and follow-up, disruption in life, and health problems), capacity (social, environmental, financial, physical, and psychological), and self-management. Data were analyzed using latent profile analysis, chi-square, multivariate linear regression, and network analysis. d Patients were classified into four profiles: low workload-low capacity (10.2%), high workload-low capacity (7.5%), low workload-high capacity (64.6%), and high workload-high capacity (17.7%). Patients with low workload and high capacity exhibited better self-management (β = 0.271,  &lt; 0.001), while those with high workload and low capacity exhibited poorer self-management (β=-0.187,  &lt; 0.001). Social capacity was the strongest predictor for all profiles. Environmental capacity ranked second for 'high workload-high capacity' (R² = 3.26) and 'low workload-low capacity' (R² = 5.32) profiles. Financial capacity followed for the 'low workload-high capacity' profile (R² = 5.40), while psychological capacity was key in the 'high workload-low capacity' profile (R² = 6.40). In the network analysis, socioeconomic factors exhibited the central nodes (  &lt; 0.05). Personalized interventions designed to increase capacity and reduce workload are essential for improving self-management in multimorbid patients. Upstream policies promoting health equity are also crucial for better self-management outcomes.</description><identifier>ISSN: 0785-3890</identifier><identifier>ISSN: 1365-2060</identifier><identifier>EISSN: 1365-2060</identifier><identifier>DOI: 10.1080/07853890.2025.2451195</identifier><identifier>PMID: 39823193</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Adult ; Aged ; capacity ; China - epidemiology ; Cross-Sectional Studies ; cumulative complexity model ; Female ; Humans ; Male ; Middle Aged ; Multimorbidity ; Primary Care ; Self-Management ; Surveys and Questionnaires ; Workload ; Workload - statistics &amp; numerical data</subject><ispartof>Annals of medicine (Helsinki), 2025-12, Vol.57 (1), p.2451195</ispartof><rights>2025 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2025 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2247-3c7ed73ccf9693d4d77666e9fe2fb08effcb45a5d633d51142a290f0bc3c4ca23</cites><orcidid>0000-0002-6744-5771 ; 0000-0001-5656-2262 ; 0000-0001-6165-046X ; 0000-0001-5906-631X ; 0000-0001-5753-5530 ; 0000-0003-4488-5624 ; 0000-0001-6947-3330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749107/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749107/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39823193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Binyu</creatorcontrib><creatorcontrib>Fu, Yujia</creatorcontrib><creatorcontrib>Wu, Jingjie</creatorcontrib><creatorcontrib>Xue, Erxu</creatorcontrib><creatorcontrib>Lai, Chuyang</creatorcontrib><creatorcontrib>Chen, Dandan</creatorcontrib><creatorcontrib>Wu, Qiwei</creatorcontrib><creatorcontrib>Yu, Jianing</creatorcontrib><creatorcontrib>Wu, Qiaoyu</creatorcontrib><creatorcontrib>Ye, Zhihong</creatorcontrib><creatorcontrib>Shao, Jing</creatorcontrib><title>Workload-capacity imbalances and their impact on self-management complexity in patients with multimorbidity: a multicenter cross-sectional study</title><title>Annals of medicine (Helsinki)</title><addtitle>Ann Med</addtitle><description>Multimorbidity is increasing globally, emphasizing the need for effective self-management strategies. The Cumulative Complexity Model (CuCoM) offers a unique perspective on understanding self-management based on workload and capacity. This study aims to validate the CuCoM in multimorbid patients and identify tailored predictors of self-management. This multicenter cross-sectional survey recruited 1920 multimorbid patients in five primary health centres and four hospitals in China. The questionnaire assessed workload (drug intake, doctor visits and follow-up, disruption in life, and health problems), capacity (social, environmental, financial, physical, and psychological), and self-management. Data were analyzed using latent profile analysis, chi-square, multivariate linear regression, and network analysis. d Patients were classified into four profiles: low workload-low capacity (10.2%), high workload-low capacity (7.5%), low workload-high capacity (64.6%), and high workload-high capacity (17.7%). Patients with low workload and high capacity exhibited better self-management (β = 0.271,  &lt; 0.001), while those with high workload and low capacity exhibited poorer self-management (β=-0.187,  &lt; 0.001). Social capacity was the strongest predictor for all profiles. Environmental capacity ranked second for 'high workload-high capacity' (R² = 3.26) and 'low workload-low capacity' (R² = 5.32) profiles. Financial capacity followed for the 'low workload-high capacity' profile (R² = 5.40), while psychological capacity was key in the 'high workload-low capacity' profile (R² = 6.40). In the network analysis, socioeconomic factors exhibited the central nodes (  &lt; 0.05). Personalized interventions designed to increase capacity and reduce workload are essential for improving self-management in multimorbid patients. Upstream policies promoting health equity are also crucial for better self-management outcomes.</description><subject>Adult</subject><subject>Aged</subject><subject>capacity</subject><subject>China - epidemiology</subject><subject>Cross-Sectional Studies</subject><subject>cumulative complexity model</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Multimorbidity</subject><subject>Primary Care</subject><subject>Self-Management</subject><subject>Surveys and Questionnaires</subject><subject>Workload</subject><subject>Workload - statistics &amp; numerical data</subject><issn>0785-3890</issn><issn>1365-2060</issn><issn>1365-2060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVUsuO0zAUjRCIKQOfAPKSTYqfccwGoRGPkUZiA2Jp3dg3rYckLnYK9C_4ZJy2M2JWls495_g-TlW9ZHTNaEvfUN0q0Rq65pSrNZeKMaMeVSsmGlVz2tDH1Wrh1AvponqW8y2llGtGn1YXwrRcMCNW1d_vMf0YIvjawQ5cmA8kjB0MMDnMBCZP5i2GVMBSnUmcSMahr0eYYIMjTjNxcdwN-OeonMgO5lDQTH6HeUvG_TCHMaYu-FJ_S-CEuMLARFyKOdcZ3RziBAPJ894fnldPehgyvji_l9W3jx--Xn2ub758ur56f1M7zqWuhdPotXCuN40RXnqtm6ZB0yPvO9pi37tOKlC-EcKX3UgO3NCedk446YCLy-r65Osj3NpdCiOkg40Q7BGIaWMhlVYHtAqMNkIKjo5LL6TRvdSaKQ9eUaaweL07ee323Yh-GS_B8MD0YWUKW7uJvyxjWhpGdXF4fXZI8ece82zHkB0O5Q4Y99kKppqWlrOyQlUn6nF9Cfv7fxi1SzTsXTTsEg17jkbRvfq_yXvVXRbEPytZuO8</recordid><startdate>202512</startdate><enddate>202512</enddate><creator>Zhao, Binyu</creator><creator>Fu, Yujia</creator><creator>Wu, Jingjie</creator><creator>Xue, Erxu</creator><creator>Lai, Chuyang</creator><creator>Chen, Dandan</creator><creator>Wu, Qiwei</creator><creator>Yu, Jianing</creator><creator>Wu, Qiaoyu</creator><creator>Ye, Zhihong</creator><creator>Shao, Jing</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6744-5771</orcidid><orcidid>https://orcid.org/0000-0001-5656-2262</orcidid><orcidid>https://orcid.org/0000-0001-6165-046X</orcidid><orcidid>https://orcid.org/0000-0001-5906-631X</orcidid><orcidid>https://orcid.org/0000-0001-5753-5530</orcidid><orcidid>https://orcid.org/0000-0003-4488-5624</orcidid><orcidid>https://orcid.org/0000-0001-6947-3330</orcidid></search><sort><creationdate>202512</creationdate><title>Workload-capacity imbalances and their impact on self-management complexity in patients with multimorbidity: a multicenter cross-sectional study</title><author>Zhao, Binyu ; Fu, Yujia ; Wu, Jingjie ; Xue, Erxu ; Lai, Chuyang ; Chen, Dandan ; Wu, Qiwei ; Yu, Jianing ; Wu, Qiaoyu ; Ye, Zhihong ; Shao, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2247-3c7ed73ccf9693d4d77666e9fe2fb08effcb45a5d633d51142a290f0bc3c4ca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Adult</topic><topic>Aged</topic><topic>capacity</topic><topic>China - epidemiology</topic><topic>Cross-Sectional Studies</topic><topic>cumulative complexity model</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Multimorbidity</topic><topic>Primary Care</topic><topic>Self-Management</topic><topic>Surveys and Questionnaires</topic><topic>Workload</topic><topic>Workload - statistics &amp; numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Binyu</creatorcontrib><creatorcontrib>Fu, Yujia</creatorcontrib><creatorcontrib>Wu, Jingjie</creatorcontrib><creatorcontrib>Xue, Erxu</creatorcontrib><creatorcontrib>Lai, Chuyang</creatorcontrib><creatorcontrib>Chen, Dandan</creatorcontrib><creatorcontrib>Wu, Qiwei</creatorcontrib><creatorcontrib>Yu, Jianing</creatorcontrib><creatorcontrib>Wu, Qiaoyu</creatorcontrib><creatorcontrib>Ye, Zhihong</creatorcontrib><creatorcontrib>Shao, Jing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Annals of medicine (Helsinki)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Binyu</au><au>Fu, Yujia</au><au>Wu, Jingjie</au><au>Xue, Erxu</au><au>Lai, Chuyang</au><au>Chen, Dandan</au><au>Wu, Qiwei</au><au>Yu, Jianing</au><au>Wu, Qiaoyu</au><au>Ye, Zhihong</au><au>Shao, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Workload-capacity imbalances and their impact on self-management complexity in patients with multimorbidity: a multicenter cross-sectional study</atitle><jtitle>Annals of medicine (Helsinki)</jtitle><addtitle>Ann Med</addtitle><date>2025-12</date><risdate>2025</risdate><volume>57</volume><issue>1</issue><spage>2451195</spage><pages>2451195-</pages><issn>0785-3890</issn><issn>1365-2060</issn><eissn>1365-2060</eissn><abstract>Multimorbidity is increasing globally, emphasizing the need for effective self-management strategies. The Cumulative Complexity Model (CuCoM) offers a unique perspective on understanding self-management based on workload and capacity. This study aims to validate the CuCoM in multimorbid patients and identify tailored predictors of self-management. This multicenter cross-sectional survey recruited 1920 multimorbid patients in five primary health centres and four hospitals in China. The questionnaire assessed workload (drug intake, doctor visits and follow-up, disruption in life, and health problems), capacity (social, environmental, financial, physical, and psychological), and self-management. Data were analyzed using latent profile analysis, chi-square, multivariate linear regression, and network analysis. d Patients were classified into four profiles: low workload-low capacity (10.2%), high workload-low capacity (7.5%), low workload-high capacity (64.6%), and high workload-high capacity (17.7%). Patients with low workload and high capacity exhibited better self-management (β = 0.271,  &lt; 0.001), while those with high workload and low capacity exhibited poorer self-management (β=-0.187,  &lt; 0.001). Social capacity was the strongest predictor for all profiles. Environmental capacity ranked second for 'high workload-high capacity' (R² = 3.26) and 'low workload-low capacity' (R² = 5.32) profiles. Financial capacity followed for the 'low workload-high capacity' profile (R² = 5.40), while psychological capacity was key in the 'high workload-low capacity' profile (R² = 6.40). In the network analysis, socioeconomic factors exhibited the central nodes (  &lt; 0.05). Personalized interventions designed to increase capacity and reduce workload are essential for improving self-management in multimorbid patients. Upstream policies promoting health equity are also crucial for better self-management outcomes.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>39823193</pmid><doi>10.1080/07853890.2025.2451195</doi><orcidid>https://orcid.org/0000-0002-6744-5771</orcidid><orcidid>https://orcid.org/0000-0001-5656-2262</orcidid><orcidid>https://orcid.org/0000-0001-6165-046X</orcidid><orcidid>https://orcid.org/0000-0001-5906-631X</orcidid><orcidid>https://orcid.org/0000-0001-5753-5530</orcidid><orcidid>https://orcid.org/0000-0003-4488-5624</orcidid><orcidid>https://orcid.org/0000-0001-6947-3330</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0785-3890
ispartof Annals of medicine (Helsinki), 2025-12, Vol.57 (1), p.2451195
issn 0785-3890
1365-2060
1365-2060
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5a9793432ec24d3497f47715dad5015e
source Taylor & Francis Open Access; PubMed Central
subjects Adult
Aged
capacity
China - epidemiology
Cross-Sectional Studies
cumulative complexity model
Female
Humans
Male
Middle Aged
Multimorbidity
Primary Care
Self-Management
Surveys and Questionnaires
Workload
Workload - statistics & numerical data
title Workload-capacity imbalances and their impact on self-management complexity in patients with multimorbidity: a multicenter cross-sectional study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Workload-capacity%20imbalances%20and%20their%20impact%20on%20self-management%20complexity%20in%20patients%20with%20multimorbidity:%20a%20multicenter%20cross-sectional%20study&rft.jtitle=Annals%20of%20medicine%20(Helsinki)&rft.au=Zhao,%20Binyu&rft.date=2025-12&rft.volume=57&rft.issue=1&rft.spage=2451195&rft.pages=2451195-&rft.issn=0785-3890&rft.eissn=1365-2060&rft_id=info:doi/10.1080/07853890.2025.2451195&rft_dat=%3Cproquest_doaj_%3E3156802061%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2247-3c7ed73ccf9693d4d77666e9fe2fb08effcb45a5d633d51142a290f0bc3c4ca23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3156802061&rft_id=info:pmid/39823193&rfr_iscdi=true