Loading…
Deep learning tight-binding approach for large-scale electronic simulations at finite temperatures with ab initio accuracy
Simulating electronic behavior in materials and devices with realistic large system sizes remains a formidable task within the ab initio framework due to its computational intensity. Here we show DeePTB, an efficient deep learning-based tight-binding approach with ab initio accuracy to address this...
Saved in:
Published in: | Nature communications 2024-08, Vol.15 (1), p.6772-12, Article 6772 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-405900dd4db362ef56e1974460075d379753933bc791c0e1f8e602becce9f5ec3 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 6772 |
container_title | Nature communications |
container_volume | 15 |
creator | Gu, Qiangqiang Zhouyin, Zhanghao Pandey, Shishir Kumar Zhang, Peng Zhang, Linfeng E, Weinan |
description | Simulating electronic behavior in materials and devices with realistic large system sizes remains a formidable task within the ab initio framework due to its computational intensity. Here we show DeePTB, an efficient deep learning-based tight-binding approach with ab initio accuracy to address this issue. By training on structural data and corresponding ab initio eigenvalues, the DeePTB model can efficiently predict tight-binding Hamiltonians for unseen structures, enabling efficient simulations of large-size systems under external perturbations such as finite temperatures and strain. This capability is vital for semiconductor band gap engineering and materials design. When combined with molecular dynamics, DeePTB facilitates efficient and accurate finite-temperature simulations of both atomic and electronic behavior simultaneously. This is demonstrated by computing the temperature-dependent electronic properties of a gallium phosphide system with 10
6
atoms. The availability of DeePTB bridges the gap between accuracy and scalability in electronic simulations, potentially advancing materials science and related fields by enabling large-scale electronic structure calculations.
Electronic simulations of large systems are computationally demanding. Here, authors develop DeePTB, a deep learning approach for efficient tight-binding calculations with ab initio accuracy, enabling million-atom simulations at finite temperatures. |
doi_str_mv | 10.1038/s41467-024-51006-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5ab7817442694e2e9582ca28706a9e3f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5ab7817442694e2e9582ca28706a9e3f</doaj_id><sourcerecordid>3090945705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-405900dd4db362ef56e1974460075d379753933bc791c0e1f8e602becce9f5ec3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpH-CALHHhEvBX7PiIykcrVeICZ2viTLJeJfFiO0Ltr8e7aQvigC8ezzzzeuy3ql4z-p5R0X5Ikkmla8pl3TBKVS2fVeecSlYzzcXzv-Kz6jKlPS1LGNZK-bI6KwHTSqjz6v4T4oFMCHHxy0iyH3e57vzSH09wOMQAbkeGEMkEccQ6OZiQ4IQux7B4R5Kf1wmyD0sikMngF5-RZJwPGCGvERP55fOOQEeOJR8IOLdGcHevqhcDTAkvH_aL6seXz9-vruvbb19vrj7e1k5wnmtJG0Np38u-E4rj0ChkRkupKNVNL7TRjTBCdE4b5iiyoUVFeYfOoRkadOKiutl0-wB7e4h-hnhnA3h7SoQ4WojZuwltA51uWRHnykjkaJqWO-CtpgoMiqFovdu0ysf8XDFlO_vkcJpgwbAmK6ihRjaaNgV9-w-6D2tcyktPlC6UagvFN8rFkFLE4WlARu3RaLsZbYvR9mS0laXpzYP02s3YP7U82loAsQGplJYR45-7_yP7GxsZsxE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090745768</pqid></control><display><type>article</type><title>Deep learning tight-binding approach for large-scale electronic simulations at finite temperatures with ab initio accuracy</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Gu, Qiangqiang ; Zhouyin, Zhanghao ; Pandey, Shishir Kumar ; Zhang, Peng ; Zhang, Linfeng ; E, Weinan</creator><creatorcontrib>Gu, Qiangqiang ; Zhouyin, Zhanghao ; Pandey, Shishir Kumar ; Zhang, Peng ; Zhang, Linfeng ; E, Weinan</creatorcontrib><description>Simulating electronic behavior in materials and devices with realistic large system sizes remains a formidable task within the ab initio framework due to its computational intensity. Here we show DeePTB, an efficient deep learning-based tight-binding approach with ab initio accuracy to address this issue. By training on structural data and corresponding ab initio eigenvalues, the DeePTB model can efficiently predict tight-binding Hamiltonians for unseen structures, enabling efficient simulations of large-size systems under external perturbations such as finite temperatures and strain. This capability is vital for semiconductor band gap engineering and materials design. When combined with molecular dynamics, DeePTB facilitates efficient and accurate finite-temperature simulations of both atomic and electronic behavior simultaneously. This is demonstrated by computing the temperature-dependent electronic properties of a gallium phosphide system with 10
6
atoms. The availability of DeePTB bridges the gap between accuracy and scalability in electronic simulations, potentially advancing materials science and related fields by enabling large-scale electronic structure calculations.
Electronic simulations of large systems are computationally demanding. Here, authors develop DeePTB, a deep learning approach for efficient tight-binding calculations with ab initio accuracy, enabling million-atom simulations at finite temperatures.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-51006-4</identifier><identifier>PMID: 39117636</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1037 ; 639/301/1034/1038 ; 639/766/119/995 ; Accuracy ; Binding ; Deep learning ; Eigenvalues ; Electronic properties ; Electronic structure ; Gallium ; Gallium phosphides ; Humanities and Social Sciences ; Materials science ; Molecular dynamics ; multidisciplinary ; Science ; Science (multidisciplinary) ; Simulation ; Temperature dependence</subject><ispartof>Nature communications, 2024-08, Vol.15 (1), p.6772-12, Article 6772</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-405900dd4db362ef56e1974460075d379753933bc791c0e1f8e602becce9f5ec3</cites><orcidid>0000-0003-0204-5205 ; 0000-0002-9438-9883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3090745768/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3090745768?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39117636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Qiangqiang</creatorcontrib><creatorcontrib>Zhouyin, Zhanghao</creatorcontrib><creatorcontrib>Pandey, Shishir Kumar</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Zhang, Linfeng</creatorcontrib><creatorcontrib>E, Weinan</creatorcontrib><title>Deep learning tight-binding approach for large-scale electronic simulations at finite temperatures with ab initio accuracy</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Simulating electronic behavior in materials and devices with realistic large system sizes remains a formidable task within the ab initio framework due to its computational intensity. Here we show DeePTB, an efficient deep learning-based tight-binding approach with ab initio accuracy to address this issue. By training on structural data and corresponding ab initio eigenvalues, the DeePTB model can efficiently predict tight-binding Hamiltonians for unseen structures, enabling efficient simulations of large-size systems under external perturbations such as finite temperatures and strain. This capability is vital for semiconductor band gap engineering and materials design. When combined with molecular dynamics, DeePTB facilitates efficient and accurate finite-temperature simulations of both atomic and electronic behavior simultaneously. This is demonstrated by computing the temperature-dependent electronic properties of a gallium phosphide system with 10
6
atoms. The availability of DeePTB bridges the gap between accuracy and scalability in electronic simulations, potentially advancing materials science and related fields by enabling large-scale electronic structure calculations.
Electronic simulations of large systems are computationally demanding. Here, authors develop DeePTB, a deep learning approach for efficient tight-binding calculations with ab initio accuracy, enabling million-atom simulations at finite temperatures.</description><subject>639/301/1034/1037</subject><subject>639/301/1034/1038</subject><subject>639/766/119/995</subject><subject>Accuracy</subject><subject>Binding</subject><subject>Deep learning</subject><subject>Eigenvalues</subject><subject>Electronic properties</subject><subject>Electronic structure</subject><subject>Gallium</subject><subject>Gallium phosphides</subject><subject>Humanities and Social Sciences</subject><subject>Materials science</subject><subject>Molecular dynamics</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Simulation</subject><subject>Temperature dependence</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEolXpH-CALHHhEvBX7PiIykcrVeICZ2viTLJeJfFiO0Ltr8e7aQvigC8ezzzzeuy3ql4z-p5R0X5Ikkmla8pl3TBKVS2fVeecSlYzzcXzv-Kz6jKlPS1LGNZK-bI6KwHTSqjz6v4T4oFMCHHxy0iyH3e57vzSH09wOMQAbkeGEMkEccQ6OZiQ4IQux7B4R5Kf1wmyD0sikMngF5-RZJwPGCGvERP55fOOQEeOJR8IOLdGcHevqhcDTAkvH_aL6seXz9-vruvbb19vrj7e1k5wnmtJG0Np38u-E4rj0ChkRkupKNVNL7TRjTBCdE4b5iiyoUVFeYfOoRkadOKiutl0-wB7e4h-hnhnA3h7SoQ4WojZuwltA51uWRHnykjkaJqWO-CtpgoMiqFovdu0ysf8XDFlO_vkcJpgwbAmK6ihRjaaNgV9-w-6D2tcyktPlC6UagvFN8rFkFLE4WlARu3RaLsZbYvR9mS0laXpzYP02s3YP7U82loAsQGplJYR45-7_yP7GxsZsxE</recordid><startdate>20240808</startdate><enddate>20240808</enddate><creator>Gu, Qiangqiang</creator><creator>Zhouyin, Zhanghao</creator><creator>Pandey, Shishir Kumar</creator><creator>Zhang, Peng</creator><creator>Zhang, Linfeng</creator><creator>E, Weinan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0204-5205</orcidid><orcidid>https://orcid.org/0000-0002-9438-9883</orcidid></search><sort><creationdate>20240808</creationdate><title>Deep learning tight-binding approach for large-scale electronic simulations at finite temperatures with ab initio accuracy</title><author>Gu, Qiangqiang ; Zhouyin, Zhanghao ; Pandey, Shishir Kumar ; Zhang, Peng ; Zhang, Linfeng ; E, Weinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-405900dd4db362ef56e1974460075d379753933bc791c0e1f8e602becce9f5ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/301/1034/1037</topic><topic>639/301/1034/1038</topic><topic>639/766/119/995</topic><topic>Accuracy</topic><topic>Binding</topic><topic>Deep learning</topic><topic>Eigenvalues</topic><topic>Electronic properties</topic><topic>Electronic structure</topic><topic>Gallium</topic><topic>Gallium phosphides</topic><topic>Humanities and Social Sciences</topic><topic>Materials science</topic><topic>Molecular dynamics</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Simulation</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Qiangqiang</creatorcontrib><creatorcontrib>Zhouyin, Zhanghao</creatorcontrib><creatorcontrib>Pandey, Shishir Kumar</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Zhang, Linfeng</creatorcontrib><creatorcontrib>E, Weinan</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Qiangqiang</au><au>Zhouyin, Zhanghao</au><au>Pandey, Shishir Kumar</au><au>Zhang, Peng</au><au>Zhang, Linfeng</au><au>E, Weinan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning tight-binding approach for large-scale electronic simulations at finite temperatures with ab initio accuracy</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-08-08</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>6772</spage><epage>12</epage><pages>6772-12</pages><artnum>6772</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Simulating electronic behavior in materials and devices with realistic large system sizes remains a formidable task within the ab initio framework due to its computational intensity. Here we show DeePTB, an efficient deep learning-based tight-binding approach with ab initio accuracy to address this issue. By training on structural data and corresponding ab initio eigenvalues, the DeePTB model can efficiently predict tight-binding Hamiltonians for unseen structures, enabling efficient simulations of large-size systems under external perturbations such as finite temperatures and strain. This capability is vital for semiconductor band gap engineering and materials design. When combined with molecular dynamics, DeePTB facilitates efficient and accurate finite-temperature simulations of both atomic and electronic behavior simultaneously. This is demonstrated by computing the temperature-dependent electronic properties of a gallium phosphide system with 10
6
atoms. The availability of DeePTB bridges the gap between accuracy and scalability in electronic simulations, potentially advancing materials science and related fields by enabling large-scale electronic structure calculations.
Electronic simulations of large systems are computationally demanding. Here, authors develop DeePTB, a deep learning approach for efficient tight-binding calculations with ab initio accuracy, enabling million-atom simulations at finite temperatures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39117636</pmid><doi>10.1038/s41467-024-51006-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0204-5205</orcidid><orcidid>https://orcid.org/0000-0002-9438-9883</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-08, Vol.15 (1), p.6772-12, Article 6772 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5ab7817442694e2e9582ca28706a9e3f |
source | Publicly Available Content Database; PubMed Central(OpenAccess); Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/1034/1037 639/301/1034/1038 639/766/119/995 Accuracy Binding Deep learning Eigenvalues Electronic properties Electronic structure Gallium Gallium phosphides Humanities and Social Sciences Materials science Molecular dynamics multidisciplinary Science Science (multidisciplinary) Simulation Temperature dependence |
title | Deep learning tight-binding approach for large-scale electronic simulations at finite temperatures with ab initio accuracy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20tight-binding%20approach%20for%20large-scale%20electronic%20simulations%20at%20finite%20temperatures%20with%20ab%20initio%20accuracy&rft.jtitle=Nature%20communications&rft.au=Gu,%20Qiangqiang&rft.date=2024-08-08&rft.volume=15&rft.issue=1&rft.spage=6772&rft.epage=12&rft.pages=6772-12&rft.artnum=6772&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-51006-4&rft_dat=%3Cproquest_doaj_%3E3090945705%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-405900dd4db362ef56e1974460075d379753933bc791c0e1f8e602becce9f5ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090745768&rft_id=info:pmid/39117636&rfr_iscdi=true |