Loading…

Deep learning tight-binding approach for large-scale electronic simulations at finite temperatures with ab initio accuracy

Simulating electronic behavior in materials and devices with realistic large system sizes remains a formidable task within the ab initio framework due to its computational intensity. Here we show DeePTB, an efficient deep learning-based tight-binding approach with ab initio accuracy to address this...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-08, Vol.15 (1), p.6772-12, Article 6772
Main Authors: Gu, Qiangqiang, Zhouyin, Zhanghao, Pandey, Shishir Kumar, Zhang, Peng, Zhang, Linfeng, E, Weinan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c322t-405900dd4db362ef56e1974460075d379753933bc791c0e1f8e602becce9f5ec3
container_end_page 12
container_issue 1
container_start_page 6772
container_title Nature communications
container_volume 15
creator Gu, Qiangqiang
Zhouyin, Zhanghao
Pandey, Shishir Kumar
Zhang, Peng
Zhang, Linfeng
E, Weinan
description Simulating electronic behavior in materials and devices with realistic large system sizes remains a formidable task within the ab initio framework due to its computational intensity. Here we show DeePTB, an efficient deep learning-based tight-binding approach with ab initio accuracy to address this issue. By training on structural data and corresponding ab initio eigenvalues, the DeePTB model can efficiently predict tight-binding Hamiltonians for unseen structures, enabling efficient simulations of large-size systems under external perturbations such as finite temperatures and strain. This capability is vital for semiconductor band gap engineering and materials design. When combined with molecular dynamics, DeePTB facilitates efficient and accurate finite-temperature simulations of both atomic and electronic behavior simultaneously. This is demonstrated by computing the temperature-dependent electronic properties of a gallium phosphide system with 10 6 atoms. The availability of DeePTB bridges the gap between accuracy and scalability in electronic simulations, potentially advancing materials science and related fields by enabling large-scale electronic structure calculations. Electronic simulations of large systems are computationally demanding. Here, authors develop DeePTB, a deep learning approach for efficient tight-binding calculations with ab initio accuracy, enabling million-atom simulations at finite temperatures.
doi_str_mv 10.1038/s41467-024-51006-4
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5ab7817442694e2e9582ca28706a9e3f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5ab7817442694e2e9582ca28706a9e3f</doaj_id><sourcerecordid>3090945705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-405900dd4db362ef56e1974460075d379753933bc791c0e1f8e602becce9f5ec3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpH-CALHHhEvBX7PiIykcrVeICZ2viTLJeJfFiO0Ltr8e7aQvigC8ezzzzeuy3ql4z-p5R0X5Ikkmla8pl3TBKVS2fVeecSlYzzcXzv-Kz6jKlPS1LGNZK-bI6KwHTSqjz6v4T4oFMCHHxy0iyH3e57vzSH09wOMQAbkeGEMkEccQ6OZiQ4IQux7B4R5Kf1wmyD0sikMngF5-RZJwPGCGvERP55fOOQEeOJR8IOLdGcHevqhcDTAkvH_aL6seXz9-vruvbb19vrj7e1k5wnmtJG0Np38u-E4rj0ChkRkupKNVNL7TRjTBCdE4b5iiyoUVFeYfOoRkadOKiutl0-wB7e4h-hnhnA3h7SoQ4WojZuwltA51uWRHnykjkaJqWO-CtpgoMiqFovdu0ysf8XDFlO_vkcJpgwbAmK6ihRjaaNgV9-w-6D2tcyktPlC6UagvFN8rFkFLE4WlARu3RaLsZbYvR9mS0laXpzYP02s3YP7U82loAsQGplJYR45-7_yP7GxsZsxE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090745768</pqid></control><display><type>article</type><title>Deep learning tight-binding approach for large-scale electronic simulations at finite temperatures with ab initio accuracy</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Gu, Qiangqiang ; Zhouyin, Zhanghao ; Pandey, Shishir Kumar ; Zhang, Peng ; Zhang, Linfeng ; E, Weinan</creator><creatorcontrib>Gu, Qiangqiang ; Zhouyin, Zhanghao ; Pandey, Shishir Kumar ; Zhang, Peng ; Zhang, Linfeng ; E, Weinan</creatorcontrib><description>Simulating electronic behavior in materials and devices with realistic large system sizes remains a formidable task within the ab initio framework due to its computational intensity. Here we show DeePTB, an efficient deep learning-based tight-binding approach with ab initio accuracy to address this issue. By training on structural data and corresponding ab initio eigenvalues, the DeePTB model can efficiently predict tight-binding Hamiltonians for unseen structures, enabling efficient simulations of large-size systems under external perturbations such as finite temperatures and strain. This capability is vital for semiconductor band gap engineering and materials design. When combined with molecular dynamics, DeePTB facilitates efficient and accurate finite-temperature simulations of both atomic and electronic behavior simultaneously. This is demonstrated by computing the temperature-dependent electronic properties of a gallium phosphide system with 10 6 atoms. The availability of DeePTB bridges the gap between accuracy and scalability in electronic simulations, potentially advancing materials science and related fields by enabling large-scale electronic structure calculations. Electronic simulations of large systems are computationally demanding. Here, authors develop DeePTB, a deep learning approach for efficient tight-binding calculations with ab initio accuracy, enabling million-atom simulations at finite temperatures.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-51006-4</identifier><identifier>PMID: 39117636</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1037 ; 639/301/1034/1038 ; 639/766/119/995 ; Accuracy ; Binding ; Deep learning ; Eigenvalues ; Electronic properties ; Electronic structure ; Gallium ; Gallium phosphides ; Humanities and Social Sciences ; Materials science ; Molecular dynamics ; multidisciplinary ; Science ; Science (multidisciplinary) ; Simulation ; Temperature dependence</subject><ispartof>Nature communications, 2024-08, Vol.15 (1), p.6772-12, Article 6772</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-405900dd4db362ef56e1974460075d379753933bc791c0e1f8e602becce9f5ec3</cites><orcidid>0000-0003-0204-5205 ; 0000-0002-9438-9883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3090745768/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3090745768?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39117636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Qiangqiang</creatorcontrib><creatorcontrib>Zhouyin, Zhanghao</creatorcontrib><creatorcontrib>Pandey, Shishir Kumar</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Zhang, Linfeng</creatorcontrib><creatorcontrib>E, Weinan</creatorcontrib><title>Deep learning tight-binding approach for large-scale electronic simulations at finite temperatures with ab initio accuracy</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Simulating electronic behavior in materials and devices with realistic large system sizes remains a formidable task within the ab initio framework due to its computational intensity. Here we show DeePTB, an efficient deep learning-based tight-binding approach with ab initio accuracy to address this issue. By training on structural data and corresponding ab initio eigenvalues, the DeePTB model can efficiently predict tight-binding Hamiltonians for unseen structures, enabling efficient simulations of large-size systems under external perturbations such as finite temperatures and strain. This capability is vital for semiconductor band gap engineering and materials design. When combined with molecular dynamics, DeePTB facilitates efficient and accurate finite-temperature simulations of both atomic and electronic behavior simultaneously. This is demonstrated by computing the temperature-dependent electronic properties of a gallium phosphide system with 10 6 atoms. The availability of DeePTB bridges the gap between accuracy and scalability in electronic simulations, potentially advancing materials science and related fields by enabling large-scale electronic structure calculations. Electronic simulations of large systems are computationally demanding. Here, authors develop DeePTB, a deep learning approach for efficient tight-binding calculations with ab initio accuracy, enabling million-atom simulations at finite temperatures.</description><subject>639/301/1034/1037</subject><subject>639/301/1034/1038</subject><subject>639/766/119/995</subject><subject>Accuracy</subject><subject>Binding</subject><subject>Deep learning</subject><subject>Eigenvalues</subject><subject>Electronic properties</subject><subject>Electronic structure</subject><subject>Gallium</subject><subject>Gallium phosphides</subject><subject>Humanities and Social Sciences</subject><subject>Materials science</subject><subject>Molecular dynamics</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Simulation</subject><subject>Temperature dependence</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEolXpH-CALHHhEvBX7PiIykcrVeICZ2viTLJeJfFiO0Ltr8e7aQvigC8ezzzzeuy3ql4z-p5R0X5Ikkmla8pl3TBKVS2fVeecSlYzzcXzv-Kz6jKlPS1LGNZK-bI6KwHTSqjz6v4T4oFMCHHxy0iyH3e57vzSH09wOMQAbkeGEMkEccQ6OZiQ4IQux7B4R5Kf1wmyD0sikMngF5-RZJwPGCGvERP55fOOQEeOJR8IOLdGcHevqhcDTAkvH_aL6seXz9-vruvbb19vrj7e1k5wnmtJG0Np38u-E4rj0ChkRkupKNVNL7TRjTBCdE4b5iiyoUVFeYfOoRkadOKiutl0-wB7e4h-hnhnA3h7SoQ4WojZuwltA51uWRHnykjkaJqWO-CtpgoMiqFovdu0ysf8XDFlO_vkcJpgwbAmK6ihRjaaNgV9-w-6D2tcyktPlC6UagvFN8rFkFLE4WlARu3RaLsZbYvR9mS0laXpzYP02s3YP7U82loAsQGplJYR45-7_yP7GxsZsxE</recordid><startdate>20240808</startdate><enddate>20240808</enddate><creator>Gu, Qiangqiang</creator><creator>Zhouyin, Zhanghao</creator><creator>Pandey, Shishir Kumar</creator><creator>Zhang, Peng</creator><creator>Zhang, Linfeng</creator><creator>E, Weinan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0204-5205</orcidid><orcidid>https://orcid.org/0000-0002-9438-9883</orcidid></search><sort><creationdate>20240808</creationdate><title>Deep learning tight-binding approach for large-scale electronic simulations at finite temperatures with ab initio accuracy</title><author>Gu, Qiangqiang ; Zhouyin, Zhanghao ; Pandey, Shishir Kumar ; Zhang, Peng ; Zhang, Linfeng ; E, Weinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-405900dd4db362ef56e1974460075d379753933bc791c0e1f8e602becce9f5ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/301/1034/1037</topic><topic>639/301/1034/1038</topic><topic>639/766/119/995</topic><topic>Accuracy</topic><topic>Binding</topic><topic>Deep learning</topic><topic>Eigenvalues</topic><topic>Electronic properties</topic><topic>Electronic structure</topic><topic>Gallium</topic><topic>Gallium phosphides</topic><topic>Humanities and Social Sciences</topic><topic>Materials science</topic><topic>Molecular dynamics</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Simulation</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Qiangqiang</creatorcontrib><creatorcontrib>Zhouyin, Zhanghao</creatorcontrib><creatorcontrib>Pandey, Shishir Kumar</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Zhang, Linfeng</creatorcontrib><creatorcontrib>E, Weinan</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Qiangqiang</au><au>Zhouyin, Zhanghao</au><au>Pandey, Shishir Kumar</au><au>Zhang, Peng</au><au>Zhang, Linfeng</au><au>E, Weinan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning tight-binding approach for large-scale electronic simulations at finite temperatures with ab initio accuracy</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-08-08</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>6772</spage><epage>12</epage><pages>6772-12</pages><artnum>6772</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Simulating electronic behavior in materials and devices with realistic large system sizes remains a formidable task within the ab initio framework due to its computational intensity. Here we show DeePTB, an efficient deep learning-based tight-binding approach with ab initio accuracy to address this issue. By training on structural data and corresponding ab initio eigenvalues, the DeePTB model can efficiently predict tight-binding Hamiltonians for unseen structures, enabling efficient simulations of large-size systems under external perturbations such as finite temperatures and strain. This capability is vital for semiconductor band gap engineering and materials design. When combined with molecular dynamics, DeePTB facilitates efficient and accurate finite-temperature simulations of both atomic and electronic behavior simultaneously. This is demonstrated by computing the temperature-dependent electronic properties of a gallium phosphide system with 10 6 atoms. The availability of DeePTB bridges the gap between accuracy and scalability in electronic simulations, potentially advancing materials science and related fields by enabling large-scale electronic structure calculations. Electronic simulations of large systems are computationally demanding. Here, authors develop DeePTB, a deep learning approach for efficient tight-binding calculations with ab initio accuracy, enabling million-atom simulations at finite temperatures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39117636</pmid><doi>10.1038/s41467-024-51006-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0204-5205</orcidid><orcidid>https://orcid.org/0000-0002-9438-9883</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-08, Vol.15 (1), p.6772-12, Article 6772
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5ab7817442694e2e9582ca28706a9e3f
source Publicly Available Content Database; PubMed Central(OpenAccess); Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/1034/1037
639/301/1034/1038
639/766/119/995
Accuracy
Binding
Deep learning
Eigenvalues
Electronic properties
Electronic structure
Gallium
Gallium phosphides
Humanities and Social Sciences
Materials science
Molecular dynamics
multidisciplinary
Science
Science (multidisciplinary)
Simulation
Temperature dependence
title Deep learning tight-binding approach for large-scale electronic simulations at finite temperatures with ab initio accuracy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20tight-binding%20approach%20for%20large-scale%20electronic%20simulations%20at%20finite%20temperatures%20with%20ab%20initio%20accuracy&rft.jtitle=Nature%20communications&rft.au=Gu,%20Qiangqiang&rft.date=2024-08-08&rft.volume=15&rft.issue=1&rft.spage=6772&rft.epage=12&rft.pages=6772-12&rft.artnum=6772&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-51006-4&rft_dat=%3Cproquest_doaj_%3E3090945705%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-405900dd4db362ef56e1974460075d379753933bc791c0e1f8e602becce9f5ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090745768&rft_id=info:pmid/39117636&rfr_iscdi=true