Loading…

Analyzing physiological signals recorded with a wearable sensor across the menstrual cycle using circular statistics

This study aims to identify the most significant features in physiological signals representing a biphasic pattern in the menstrual cycle using circular statistics which is an appropriate analytic method for the interpretation of data with a periodic nature. The results can be used empirically to de...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in network physiology 2023-10, Vol.3, p.1227228-1227228
Main Authors: Sides, Krystal, Kilungeja, Grentina, Tapia, Matthew, Kreidl, Patrick, Brinkmann, Benjamin H., Nasseri, Mona
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-bb05ef2bf3cc3fba4b49edab6396c7b0af1e8a00d5d2e69c097cfb20c90ab7af3
cites cdi_FETCH-LOGICAL-c446t-bb05ef2bf3cc3fba4b49edab6396c7b0af1e8a00d5d2e69c097cfb20c90ab7af3
container_end_page 1227228
container_issue
container_start_page 1227228
container_title Frontiers in network physiology
container_volume 3
creator Sides, Krystal
Kilungeja, Grentina
Tapia, Matthew
Kreidl, Patrick
Brinkmann, Benjamin H.
Nasseri, Mona
description This study aims to identify the most significant features in physiological signals representing a biphasic pattern in the menstrual cycle using circular statistics which is an appropriate analytic method for the interpretation of data with a periodic nature. The results can be used empirically to determine menstrual phases. A non-uniform pattern was observed in ovulating subjects, with a significant periodicity (p < 0.05) in mean temperature, heart rate (HR), Inter-beat Interval (IBI), mean tonic component of Electrodermal Activity (EDA), and signal magnitude area (SMA) of the EDA phasic component in the frequency domain. In contrast, non-ovulating cycles displayed a more uniform distribution (p > 0.05). There was a significant difference between ovulating and non-ovulating cycles (p < 0.05) in temperature, IBI, and EDA but not in mean HR. Selected features were used in training an Autoregressive Integrated Moving Average (ARIMA) model, using data from at least one cycle of a subject, to predict the behavior of the signal in the last cycle. By iteratively retraining the algorithm on a per-day basis, the mean temperature, HR, IBI and EDA tonic values of the next day were predicted with root mean square error (RMSE) of 0.13 ± 0.07 (C°), 1.31 ± 0.34 (bpm), 0.016 ± 0.005 (s) and 0.17 ± 0.17 ( μ S), respectively.
doi_str_mv 10.3389/fnetp.2023.1227228
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5ac1eb9890b24c40897366c9dcc80919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5ac1eb9890b24c40897366c9dcc80919</doaj_id><sourcerecordid>2886600521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-bb05ef2bf3cc3fba4b49edab6396c7b0af1e8a00d5d2e69c097cfb20c90ab7af3</originalsourceid><addsrcrecordid>eNpVkU1v2zAMho1hA1a0_QM76bhLMlpyZOs0FMU-ChTYpTsLFE07Khwrk-QV2a-f8oFhPZEgXz4k-FbVhxrWSnXm0zBz3q8lSLWupWyl7N5UV1K3zQpqMG__y99Xtyk9A4Bsu6YMXFX5bsbp8MfPo9hvD8mHKYyecBLJj6WTRGQKsedevPi8FSheGCO6iUXiOYUokGJISeQti12p5LiUYTpQUSzpiCUfaZkwipQx-5Q9pZvq3VDYfHuJ19XPr1-e7r-vHn98e7i_e1xR0-i8cg42PEg3KCI1OGxcY7hHp5XR1DrAoeYOAfpNL1kbAtPS4CSQAXQtDuq6ejhz-4DPdh_9DuPBBvT2VAhxtBjLQRPbDVLNznQGnGyogc60SmsyPVEHpjaF9fnM2i9uxz3xnCNOr6CvO7Pf2jH8tjVoWUOjCuHjhRDDr4VTtjufiKcJZw5LsrLrtAbYyLpI5Vl6em7k4d-eGuzRc3vy3B49txfP1V_T2aW2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886600521</pqid></control><display><type>article</type><title>Analyzing physiological signals recorded with a wearable sensor across the menstrual cycle using circular statistics</title><source>PubMed Central</source><creator>Sides, Krystal ; Kilungeja, Grentina ; Tapia, Matthew ; Kreidl, Patrick ; Brinkmann, Benjamin H. ; Nasseri, Mona</creator><creatorcontrib>Sides, Krystal ; Kilungeja, Grentina ; Tapia, Matthew ; Kreidl, Patrick ; Brinkmann, Benjamin H. ; Nasseri, Mona</creatorcontrib><description>This study aims to identify the most significant features in physiological signals representing a biphasic pattern in the menstrual cycle using circular statistics which is an appropriate analytic method for the interpretation of data with a periodic nature. The results can be used empirically to determine menstrual phases. A non-uniform pattern was observed in ovulating subjects, with a significant periodicity (p &lt; 0.05) in mean temperature, heart rate (HR), Inter-beat Interval (IBI), mean tonic component of Electrodermal Activity (EDA), and signal magnitude area (SMA) of the EDA phasic component in the frequency domain. In contrast, non-ovulating cycles displayed a more uniform distribution (p &gt; 0.05). There was a significant difference between ovulating and non-ovulating cycles (p &lt; 0.05) in temperature, IBI, and EDA but not in mean HR. Selected features were used in training an Autoregressive Integrated Moving Average (ARIMA) model, using data from at least one cycle of a subject, to predict the behavior of the signal in the last cycle. By iteratively retraining the algorithm on a per-day basis, the mean temperature, HR, IBI and EDA tonic values of the next day were predicted with root mean square error (RMSE) of 0.13 ± 0.07 (C°), 1.31 ± 0.34 (bpm), 0.016 ± 0.005 (s) and 0.17 ± 0.17 ( μ S), respectively.</description><identifier>ISSN: 2674-0109</identifier><identifier>EISSN: 2674-0109</identifier><identifier>DOI: 10.3389/fnetp.2023.1227228</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>autoregressive integrated moving average ; circular statistical analysis ; follicular phase ; menstrual cycles ; Network Physiology ; physiological signal processing ; wearable sensor</subject><ispartof>Frontiers in network physiology, 2023-10, Vol.3, p.1227228-1227228</ispartof><rights>Copyright © 2023 Sides, Kilungeja, Tapia, Kreidl, Brinkmann and Nasseri. 2023 Sides, Kilungeja, Tapia, Kreidl, Brinkmann and Nasseri</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-bb05ef2bf3cc3fba4b49edab6396c7b0af1e8a00d5d2e69c097cfb20c90ab7af3</citedby><cites>FETCH-LOGICAL-c446t-bb05ef2bf3cc3fba4b49edab6396c7b0af1e8a00d5d2e69c097cfb20c90ab7af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621043/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621043/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Sides, Krystal</creatorcontrib><creatorcontrib>Kilungeja, Grentina</creatorcontrib><creatorcontrib>Tapia, Matthew</creatorcontrib><creatorcontrib>Kreidl, Patrick</creatorcontrib><creatorcontrib>Brinkmann, Benjamin H.</creatorcontrib><creatorcontrib>Nasseri, Mona</creatorcontrib><title>Analyzing physiological signals recorded with a wearable sensor across the menstrual cycle using circular statistics</title><title>Frontiers in network physiology</title><description>This study aims to identify the most significant features in physiological signals representing a biphasic pattern in the menstrual cycle using circular statistics which is an appropriate analytic method for the interpretation of data with a periodic nature. The results can be used empirically to determine menstrual phases. A non-uniform pattern was observed in ovulating subjects, with a significant periodicity (p &lt; 0.05) in mean temperature, heart rate (HR), Inter-beat Interval (IBI), mean tonic component of Electrodermal Activity (EDA), and signal magnitude area (SMA) of the EDA phasic component in the frequency domain. In contrast, non-ovulating cycles displayed a more uniform distribution (p &gt; 0.05). There was a significant difference between ovulating and non-ovulating cycles (p &lt; 0.05) in temperature, IBI, and EDA but not in mean HR. Selected features were used in training an Autoregressive Integrated Moving Average (ARIMA) model, using data from at least one cycle of a subject, to predict the behavior of the signal in the last cycle. By iteratively retraining the algorithm on a per-day basis, the mean temperature, HR, IBI and EDA tonic values of the next day were predicted with root mean square error (RMSE) of 0.13 ± 0.07 (C°), 1.31 ± 0.34 (bpm), 0.016 ± 0.005 (s) and 0.17 ± 0.17 ( μ S), respectively.</description><subject>autoregressive integrated moving average</subject><subject>circular statistical analysis</subject><subject>follicular phase</subject><subject>menstrual cycles</subject><subject>Network Physiology</subject><subject>physiological signal processing</subject><subject>wearable sensor</subject><issn>2674-0109</issn><issn>2674-0109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1v2zAMho1hA1a0_QM76bhLMlpyZOs0FMU-ChTYpTsLFE07Khwrk-QV2a-f8oFhPZEgXz4k-FbVhxrWSnXm0zBz3q8lSLWupWyl7N5UV1K3zQpqMG__y99Xtyk9A4Bsu6YMXFX5bsbp8MfPo9hvD8mHKYyecBLJj6WTRGQKsedevPi8FSheGCO6iUXiOYUokGJISeQti12p5LiUYTpQUSzpiCUfaZkwipQx-5Q9pZvq3VDYfHuJ19XPr1-e7r-vHn98e7i_e1xR0-i8cg42PEg3KCI1OGxcY7hHp5XR1DrAoeYOAfpNL1kbAtPS4CSQAXQtDuq6ejhz-4DPdh_9DuPBBvT2VAhxtBjLQRPbDVLNznQGnGyogc60SmsyPVEHpjaF9fnM2i9uxz3xnCNOr6CvO7Pf2jH8tjVoWUOjCuHjhRDDr4VTtjufiKcJZw5LsrLrtAbYyLpI5Vl6em7k4d-eGuzRc3vy3B49txfP1V_T2aW2</recordid><startdate>20231019</startdate><enddate>20231019</enddate><creator>Sides, Krystal</creator><creator>Kilungeja, Grentina</creator><creator>Tapia, Matthew</creator><creator>Kreidl, Patrick</creator><creator>Brinkmann, Benjamin H.</creator><creator>Nasseri, Mona</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20231019</creationdate><title>Analyzing physiological signals recorded with a wearable sensor across the menstrual cycle using circular statistics</title><author>Sides, Krystal ; Kilungeja, Grentina ; Tapia, Matthew ; Kreidl, Patrick ; Brinkmann, Benjamin H. ; Nasseri, Mona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-bb05ef2bf3cc3fba4b49edab6396c7b0af1e8a00d5d2e69c097cfb20c90ab7af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>autoregressive integrated moving average</topic><topic>circular statistical analysis</topic><topic>follicular phase</topic><topic>menstrual cycles</topic><topic>Network Physiology</topic><topic>physiological signal processing</topic><topic>wearable sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sides, Krystal</creatorcontrib><creatorcontrib>Kilungeja, Grentina</creatorcontrib><creatorcontrib>Tapia, Matthew</creatorcontrib><creatorcontrib>Kreidl, Patrick</creatorcontrib><creatorcontrib>Brinkmann, Benjamin H.</creatorcontrib><creatorcontrib>Nasseri, Mona</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in network physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sides, Krystal</au><au>Kilungeja, Grentina</au><au>Tapia, Matthew</au><au>Kreidl, Patrick</au><au>Brinkmann, Benjamin H.</au><au>Nasseri, Mona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing physiological signals recorded with a wearable sensor across the menstrual cycle using circular statistics</atitle><jtitle>Frontiers in network physiology</jtitle><date>2023-10-19</date><risdate>2023</risdate><volume>3</volume><spage>1227228</spage><epage>1227228</epage><pages>1227228-1227228</pages><issn>2674-0109</issn><eissn>2674-0109</eissn><abstract>This study aims to identify the most significant features in physiological signals representing a biphasic pattern in the menstrual cycle using circular statistics which is an appropriate analytic method for the interpretation of data with a periodic nature. The results can be used empirically to determine menstrual phases. A non-uniform pattern was observed in ovulating subjects, with a significant periodicity (p &lt; 0.05) in mean temperature, heart rate (HR), Inter-beat Interval (IBI), mean tonic component of Electrodermal Activity (EDA), and signal magnitude area (SMA) of the EDA phasic component in the frequency domain. In contrast, non-ovulating cycles displayed a more uniform distribution (p &gt; 0.05). There was a significant difference between ovulating and non-ovulating cycles (p &lt; 0.05) in temperature, IBI, and EDA but not in mean HR. Selected features were used in training an Autoregressive Integrated Moving Average (ARIMA) model, using data from at least one cycle of a subject, to predict the behavior of the signal in the last cycle. By iteratively retraining the algorithm on a per-day basis, the mean temperature, HR, IBI and EDA tonic values of the next day were predicted with root mean square error (RMSE) of 0.13 ± 0.07 (C°), 1.31 ± 0.34 (bpm), 0.016 ± 0.005 (s) and 0.17 ± 0.17 ( μ S), respectively.</abstract><pub>Frontiers Media S.A</pub><doi>10.3389/fnetp.2023.1227228</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2674-0109
ispartof Frontiers in network physiology, 2023-10, Vol.3, p.1227228-1227228
issn 2674-0109
2674-0109
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5ac1eb9890b24c40897366c9dcc80919
source PubMed Central
subjects autoregressive integrated moving average
circular statistical analysis
follicular phase
menstrual cycles
Network Physiology
physiological signal processing
wearable sensor
title Analyzing physiological signals recorded with a wearable sensor across the menstrual cycle using circular statistics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20physiological%20signals%20recorded%20with%20a%20wearable%20sensor%20across%20the%20menstrual%20cycle%20using%20circular%20statistics&rft.jtitle=Frontiers%20in%20network%20physiology&rft.au=Sides,%20Krystal&rft.date=2023-10-19&rft.volume=3&rft.spage=1227228&rft.epage=1227228&rft.pages=1227228-1227228&rft.issn=2674-0109&rft.eissn=2674-0109&rft_id=info:doi/10.3389/fnetp.2023.1227228&rft_dat=%3Cproquest_doaj_%3E2886600521%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-bb05ef2bf3cc3fba4b49edab6396c7b0af1e8a00d5d2e69c097cfb20c90ab7af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2886600521&rft_id=info:pmid/&rfr_iscdi=true