Loading…

Exploring the Quantum Spectral Curve for AdS3/CFT2

A bstract Despite the rich and fruitful history of the integrability approach to string theory on the AdS 3 × S 3 × T 4 background, it has not been possible to extract many concrete predictions from integrability, except in a strict asymptotic regime of large quantum numbers, due to the severity of...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2023-12, Vol.2023 (12), p.89-38, Article 89
Main Authors: Cavaglià, Andrea, Ekhammar, Simon, Gromov, Nikolay, Ryan, Paul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c417t-25382700b14aa29b4ae617ca0e4568502660457a9ae56e1b4572eab0462061da3
cites cdi_FETCH-LOGICAL-c417t-25382700b14aa29b4ae617ca0e4568502660457a9ae56e1b4572eab0462061da3
container_end_page 38
container_issue 12
container_start_page 89
container_title The journal of high energy physics
container_volume 2023
creator Cavaglià, Andrea
Ekhammar, Simon
Gromov, Nikolay
Ryan, Paul
description A bstract Despite the rich and fruitful history of the integrability approach to string theory on the AdS 3 × S 3 × T 4 background, it has not been possible to extract many concrete predictions from integrability, except in a strict asymptotic regime of large quantum numbers, due to the severity of wrapping effects. The situation changed radically with two independent and identical proposals for the Quantum Spectral Curve (QSC) for this system in a background of pure Ramond-Ramond flux. In other integrable superstring backgrounds there is compelling evidence that this formulation captures all wrapping effects exactly and describes the full planar spectrum. This great success motivates us to study the new proposed QSC and develop methods to extract from it concrete predictions for spectral data. The AdS 3 × S 3 × T 4 case presents a significant novel feature and challenge compared to its higher-dimensional analogues — massless modes. It has been conjectured that these manifest themselves in a new property of this QSC: the non-quadratic nature of the branch-cut singularities of the QSC Q-functions. This feature implies new technical challenges in solving the QSC equations as compared to the well-studied case of N = 4 SYM. In this paper we resolve these difficulties and obtain the first ever predictions for unprotected string excitations in the planar limit with finite quantum numbers and RR flux. We explain how to extract a systematic expansion around the analogue of the weak ’t Hooft coupling limit in N = 4 SYM and also obtain high-precision numerical results. These concrete data and others obtainable from the QSC could help to identify the so-far mysterious dual CFT.
doi_str_mv 10.1007/JHEP12(2023)089
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5ad6c5d541de43288154a4b7a829f78b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5ad6c5d541de43288154a4b7a829f78b</doaj_id><sourcerecordid>2904480986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-25382700b14aa29b4ae617ca0e4568502660457a9ae56e1b4572eab0462061da3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxYMoWKtnrwEveoid3eznsZTWVgoqredlkmxqStqNm0T0vzc1ol48zWN4783wC4JLArcEQI7u59NHQq8p0PgGlD4KBgSojhST-viPPg3O6noLQDjRMAjo9L0qnS_2m7B5seFTi_um3YWryqaNxzKctP7Nhrnz4ThbxaPJbE3Pg5Mcy9pefM9h8DybrifzaPlwt5iMl1HKiGwiymNFJUBCGCLVCUMriEwRLONCcaBCAOMSNVouLEk6TS0mwAQFQTKMh8Gi780cbk3lix36D-OwMF8L5zcGfVOkpTUcM5HyjDOSWRZTpQhnyBKJiupcqqTruuq7Ku9eW1s3Zutav-_eN1QDYwq0Ep1r1LtS7-ra2_znKgFzgGx6yOYA2XSQuwT0ibo6MLT-t_e_yCefn3oa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904480986</pqid></control><display><type>article</type><title>Exploring the Quantum Spectral Curve for AdS3/CFT2</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Cavaglià, Andrea ; Ekhammar, Simon ; Gromov, Nikolay ; Ryan, Paul</creator><creatorcontrib>Cavaglià, Andrea ; Ekhammar, Simon ; Gromov, Nikolay ; Ryan, Paul</creatorcontrib><description>A bstract Despite the rich and fruitful history of the integrability approach to string theory on the AdS 3 × S 3 × T 4 background, it has not been possible to extract many concrete predictions from integrability, except in a strict asymptotic regime of large quantum numbers, due to the severity of wrapping effects. The situation changed radically with two independent and identical proposals for the Quantum Spectral Curve (QSC) for this system in a background of pure Ramond-Ramond flux. In other integrable superstring backgrounds there is compelling evidence that this formulation captures all wrapping effects exactly and describes the full planar spectrum. This great success motivates us to study the new proposed QSC and develop methods to extract from it concrete predictions for spectral data. The AdS 3 × S 3 × T 4 case presents a significant novel feature and challenge compared to its higher-dimensional analogues — massless modes. It has been conjectured that these manifest themselves in a new property of this QSC: the non-quadratic nature of the branch-cut singularities of the QSC Q-functions. This feature implies new technical challenges in solving the QSC equations as compared to the well-studied case of N = 4 SYM. In this paper we resolve these difficulties and obtain the first ever predictions for unprotected string excitations in the planar limit with finite quantum numbers and RR flux. We explain how to extract a systematic expansion around the analogue of the weak ’t Hooft coupling limit in N = 4 SYM and also obtain high-precision numerical results. These concrete data and others obtainable from the QSC could help to identify the so-far mysterious dual CFT.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP12(2023)089</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>AdS-CFT Correspondence ; Classical and Quantum Gravitation ; Elementary Particles ; High energy physics ; Integrable Field Theories ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum numbers ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Singularity (mathematics) ; String Theory</subject><ispartof>The journal of high energy physics, 2023-12, Vol.2023 (12), p.89-38, Article 89</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-25382700b14aa29b4ae617ca0e4568502660457a9ae56e1b4572eab0462061da3</citedby><cites>FETCH-LOGICAL-c417t-25382700b14aa29b4ae617ca0e4568502660457a9ae56e1b4572eab0462061da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2904480986/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2904480986?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Cavaglià, Andrea</creatorcontrib><creatorcontrib>Ekhammar, Simon</creatorcontrib><creatorcontrib>Gromov, Nikolay</creatorcontrib><creatorcontrib>Ryan, Paul</creatorcontrib><title>Exploring the Quantum Spectral Curve for AdS3/CFT2</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract Despite the rich and fruitful history of the integrability approach to string theory on the AdS 3 × S 3 × T 4 background, it has not been possible to extract many concrete predictions from integrability, except in a strict asymptotic regime of large quantum numbers, due to the severity of wrapping effects. The situation changed radically with two independent and identical proposals for the Quantum Spectral Curve (QSC) for this system in a background of pure Ramond-Ramond flux. In other integrable superstring backgrounds there is compelling evidence that this formulation captures all wrapping effects exactly and describes the full planar spectrum. This great success motivates us to study the new proposed QSC and develop methods to extract from it concrete predictions for spectral data. The AdS 3 × S 3 × T 4 case presents a significant novel feature and challenge compared to its higher-dimensional analogues — massless modes. It has been conjectured that these manifest themselves in a new property of this QSC: the non-quadratic nature of the branch-cut singularities of the QSC Q-functions. This feature implies new technical challenges in solving the QSC equations as compared to the well-studied case of N = 4 SYM. In this paper we resolve these difficulties and obtain the first ever predictions for unprotected string excitations in the planar limit with finite quantum numbers and RR flux. We explain how to extract a systematic expansion around the analogue of the weak ’t Hooft coupling limit in N = 4 SYM and also obtain high-precision numerical results. These concrete data and others obtainable from the QSC could help to identify the so-far mysterious dual CFT.</description><subject>AdS-CFT Correspondence</subject><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Integrable Field Theories</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum numbers</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Singularity (mathematics)</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kM1Lw0AQxYMoWKtnrwEveoid3eznsZTWVgoqredlkmxqStqNm0T0vzc1ol48zWN4783wC4JLArcEQI7u59NHQq8p0PgGlD4KBgSojhST-viPPg3O6noLQDjRMAjo9L0qnS_2m7B5seFTi_um3YWryqaNxzKctP7Nhrnz4ThbxaPJbE3Pg5Mcy9pefM9h8DybrifzaPlwt5iMl1HKiGwiymNFJUBCGCLVCUMriEwRLONCcaBCAOMSNVouLEk6TS0mwAQFQTKMh8Gi780cbk3lix36D-OwMF8L5zcGfVOkpTUcM5HyjDOSWRZTpQhnyBKJiupcqqTruuq7Ku9eW1s3Zutav-_eN1QDYwq0Ep1r1LtS7-ra2_znKgFzgGx6yOYA2XSQuwT0ibo6MLT-t_e_yCefn3oa</recordid><startdate>20231213</startdate><enddate>20231213</enddate><creator>Cavaglià, Andrea</creator><creator>Ekhammar, Simon</creator><creator>Gromov, Nikolay</creator><creator>Ryan, Paul</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope></search><sort><creationdate>20231213</creationdate><title>Exploring the Quantum Spectral Curve for AdS3/CFT2</title><author>Cavaglià, Andrea ; Ekhammar, Simon ; Gromov, Nikolay ; Ryan, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-25382700b14aa29b4ae617ca0e4568502660457a9ae56e1b4572eab0462061da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AdS-CFT Correspondence</topic><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Integrable Field Theories</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum numbers</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Singularity (mathematics)</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavaglià, Andrea</creatorcontrib><creatorcontrib>Ekhammar, Simon</creatorcontrib><creatorcontrib>Gromov, Nikolay</creatorcontrib><creatorcontrib>Ryan, Paul</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavaglià, Andrea</au><au>Ekhammar, Simon</au><au>Gromov, Nikolay</au><au>Ryan, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Quantum Spectral Curve for AdS3/CFT2</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2023-12-13</date><risdate>2023</risdate><volume>2023</volume><issue>12</issue><spage>89</spage><epage>38</epage><pages>89-38</pages><artnum>89</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract Despite the rich and fruitful history of the integrability approach to string theory on the AdS 3 × S 3 × T 4 background, it has not been possible to extract many concrete predictions from integrability, except in a strict asymptotic regime of large quantum numbers, due to the severity of wrapping effects. The situation changed radically with two independent and identical proposals for the Quantum Spectral Curve (QSC) for this system in a background of pure Ramond-Ramond flux. In other integrable superstring backgrounds there is compelling evidence that this formulation captures all wrapping effects exactly and describes the full planar spectrum. This great success motivates us to study the new proposed QSC and develop methods to extract from it concrete predictions for spectral data. The AdS 3 × S 3 × T 4 case presents a significant novel feature and challenge compared to its higher-dimensional analogues — massless modes. It has been conjectured that these manifest themselves in a new property of this QSC: the non-quadratic nature of the branch-cut singularities of the QSC Q-functions. This feature implies new technical challenges in solving the QSC equations as compared to the well-studied case of N = 4 SYM. In this paper we resolve these difficulties and obtain the first ever predictions for unprotected string excitations in the planar limit with finite quantum numbers and RR flux. We explain how to extract a systematic expansion around the analogue of the weak ’t Hooft coupling limit in N = 4 SYM and also obtain high-precision numerical results. These concrete data and others obtainable from the QSC could help to identify the so-far mysterious dual CFT.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP12(2023)089</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2023-12, Vol.2023 (12), p.89-38, Article 89
issn 1029-8479
1029-8479
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5ad6c5d541de43288154a4b7a829f78b
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects AdS-CFT Correspondence
Classical and Quantum Gravitation
Elementary Particles
High energy physics
Integrable Field Theories
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum numbers
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Singularity (mathematics)
String Theory
title Exploring the Quantum Spectral Curve for AdS3/CFT2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Quantum%20Spectral%20Curve%20for%20AdS3/CFT2&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Cavagli%C3%A0,%20Andrea&rft.date=2023-12-13&rft.volume=2023&rft.issue=12&rft.spage=89&rft.epage=38&rft.pages=89-38&rft.artnum=89&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP12(2023)089&rft_dat=%3Cproquest_doaj_%3E2904480986%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-25382700b14aa29b4ae617ca0e4568502660457a9ae56e1b4572eab0462061da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904480986&rft_id=info:pmid/&rfr_iscdi=true