Loading…
Exploring the Quantum Spectral Curve for AdS3/CFT2
A bstract Despite the rich and fruitful history of the integrability approach to string theory on the AdS 3 × S 3 × T 4 background, it has not been possible to extract many concrete predictions from integrability, except in a strict asymptotic regime of large quantum numbers, due to the severity of...
Saved in:
Published in: | The journal of high energy physics 2023-12, Vol.2023 (12), p.89-38, Article 89 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c417t-25382700b14aa29b4ae617ca0e4568502660457a9ae56e1b4572eab0462061da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c417t-25382700b14aa29b4ae617ca0e4568502660457a9ae56e1b4572eab0462061da3 |
container_end_page | 38 |
container_issue | 12 |
container_start_page | 89 |
container_title | The journal of high energy physics |
container_volume | 2023 |
creator | Cavaglià, Andrea Ekhammar, Simon Gromov, Nikolay Ryan, Paul |
description | A
bstract
Despite the rich and fruitful history of the integrability approach to string theory on the AdS
3
× S
3
× T
4
background, it has not been possible to extract many concrete predictions from integrability, except in a strict asymptotic regime of large quantum numbers, due to the severity of wrapping effects. The situation changed radically with two independent and identical proposals for the Quantum Spectral Curve (QSC) for this system in a background of pure Ramond-Ramond flux. In other integrable superstring backgrounds there is compelling evidence that this formulation captures all wrapping effects exactly and describes the full planar spectrum. This great success motivates us to study the new proposed QSC and develop methods to extract from it concrete predictions for spectral data. The AdS
3
× S
3
× T
4
case presents a significant novel feature and challenge compared to its higher-dimensional analogues — massless modes. It has been conjectured that these manifest themselves in a new property of this QSC: the non-quadratic nature of the branch-cut singularities of the QSC Q-functions. This feature implies new technical challenges in solving the QSC equations as compared to the well-studied case of
N
= 4 SYM. In this paper we resolve these difficulties and obtain the first ever predictions for unprotected string excitations in the planar limit with finite quantum numbers and RR flux. We explain how to extract a systematic expansion around the analogue of the weak ’t Hooft coupling limit in
N
= 4 SYM and also obtain high-precision numerical results. These concrete data and others obtainable from the QSC could help to identify the so-far mysterious dual CFT. |
doi_str_mv | 10.1007/JHEP12(2023)089 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5ad6c5d541de43288154a4b7a829f78b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5ad6c5d541de43288154a4b7a829f78b</doaj_id><sourcerecordid>2904480986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-25382700b14aa29b4ae617ca0e4568502660457a9ae56e1b4572eab0462061da3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxYMoWKtnrwEveoid3eznsZTWVgoqredlkmxqStqNm0T0vzc1ol48zWN4783wC4JLArcEQI7u59NHQq8p0PgGlD4KBgSojhST-viPPg3O6noLQDjRMAjo9L0qnS_2m7B5seFTi_um3YWryqaNxzKctP7Nhrnz4ThbxaPJbE3Pg5Mcy9pefM9h8DybrifzaPlwt5iMl1HKiGwiymNFJUBCGCLVCUMriEwRLONCcaBCAOMSNVouLEk6TS0mwAQFQTKMh8Gi780cbk3lix36D-OwMF8L5zcGfVOkpTUcM5HyjDOSWRZTpQhnyBKJiupcqqTruuq7Ku9eW1s3Zutav-_eN1QDYwq0Ep1r1LtS7-ra2_znKgFzgGx6yOYA2XSQuwT0ibo6MLT-t_e_yCefn3oa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904480986</pqid></control><display><type>article</type><title>Exploring the Quantum Spectral Curve for AdS3/CFT2</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Cavaglià, Andrea ; Ekhammar, Simon ; Gromov, Nikolay ; Ryan, Paul</creator><creatorcontrib>Cavaglià, Andrea ; Ekhammar, Simon ; Gromov, Nikolay ; Ryan, Paul</creatorcontrib><description>A
bstract
Despite the rich and fruitful history of the integrability approach to string theory on the AdS
3
× S
3
× T
4
background, it has not been possible to extract many concrete predictions from integrability, except in a strict asymptotic regime of large quantum numbers, due to the severity of wrapping effects. The situation changed radically with two independent and identical proposals for the Quantum Spectral Curve (QSC) for this system in a background of pure Ramond-Ramond flux. In other integrable superstring backgrounds there is compelling evidence that this formulation captures all wrapping effects exactly and describes the full planar spectrum. This great success motivates us to study the new proposed QSC and develop methods to extract from it concrete predictions for spectral data. The AdS
3
× S
3
× T
4
case presents a significant novel feature and challenge compared to its higher-dimensional analogues — massless modes. It has been conjectured that these manifest themselves in a new property of this QSC: the non-quadratic nature of the branch-cut singularities of the QSC Q-functions. This feature implies new technical challenges in solving the QSC equations as compared to the well-studied case of
N
= 4 SYM. In this paper we resolve these difficulties and obtain the first ever predictions for unprotected string excitations in the planar limit with finite quantum numbers and RR flux. We explain how to extract a systematic expansion around the analogue of the weak ’t Hooft coupling limit in
N
= 4 SYM and also obtain high-precision numerical results. These concrete data and others obtainable from the QSC could help to identify the so-far mysterious dual CFT.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP12(2023)089</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>AdS-CFT Correspondence ; Classical and Quantum Gravitation ; Elementary Particles ; High energy physics ; Integrable Field Theories ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum numbers ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Singularity (mathematics) ; String Theory</subject><ispartof>The journal of high energy physics, 2023-12, Vol.2023 (12), p.89-38, Article 89</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-25382700b14aa29b4ae617ca0e4568502660457a9ae56e1b4572eab0462061da3</citedby><cites>FETCH-LOGICAL-c417t-25382700b14aa29b4ae617ca0e4568502660457a9ae56e1b4572eab0462061da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2904480986/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2904480986?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Cavaglià, Andrea</creatorcontrib><creatorcontrib>Ekhammar, Simon</creatorcontrib><creatorcontrib>Gromov, Nikolay</creatorcontrib><creatorcontrib>Ryan, Paul</creatorcontrib><title>Exploring the Quantum Spectral Curve for AdS3/CFT2</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
Despite the rich and fruitful history of the integrability approach to string theory on the AdS
3
× S
3
× T
4
background, it has not been possible to extract many concrete predictions from integrability, except in a strict asymptotic regime of large quantum numbers, due to the severity of wrapping effects. The situation changed radically with two independent and identical proposals for the Quantum Spectral Curve (QSC) for this system in a background of pure Ramond-Ramond flux. In other integrable superstring backgrounds there is compelling evidence that this formulation captures all wrapping effects exactly and describes the full planar spectrum. This great success motivates us to study the new proposed QSC and develop methods to extract from it concrete predictions for spectral data. The AdS
3
× S
3
× T
4
case presents a significant novel feature and challenge compared to its higher-dimensional analogues — massless modes. It has been conjectured that these manifest themselves in a new property of this QSC: the non-quadratic nature of the branch-cut singularities of the QSC Q-functions. This feature implies new technical challenges in solving the QSC equations as compared to the well-studied case of
N
= 4 SYM. In this paper we resolve these difficulties and obtain the first ever predictions for unprotected string excitations in the planar limit with finite quantum numbers and RR flux. We explain how to extract a systematic expansion around the analogue of the weak ’t Hooft coupling limit in
N
= 4 SYM and also obtain high-precision numerical results. These concrete data and others obtainable from the QSC could help to identify the so-far mysterious dual CFT.</description><subject>AdS-CFT Correspondence</subject><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Integrable Field Theories</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum numbers</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Singularity (mathematics)</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kM1Lw0AQxYMoWKtnrwEveoid3eznsZTWVgoqredlkmxqStqNm0T0vzc1ol48zWN4783wC4JLArcEQI7u59NHQq8p0PgGlD4KBgSojhST-viPPg3O6noLQDjRMAjo9L0qnS_2m7B5seFTi_um3YWryqaNxzKctP7Nhrnz4ThbxaPJbE3Pg5Mcy9pefM9h8DybrifzaPlwt5iMl1HKiGwiymNFJUBCGCLVCUMriEwRLONCcaBCAOMSNVouLEk6TS0mwAQFQTKMh8Gi780cbk3lix36D-OwMF8L5zcGfVOkpTUcM5HyjDOSWRZTpQhnyBKJiupcqqTruuq7Ku9eW1s3Zutav-_eN1QDYwq0Ep1r1LtS7-ra2_znKgFzgGx6yOYA2XSQuwT0ibo6MLT-t_e_yCefn3oa</recordid><startdate>20231213</startdate><enddate>20231213</enddate><creator>Cavaglià, Andrea</creator><creator>Ekhammar, Simon</creator><creator>Gromov, Nikolay</creator><creator>Ryan, Paul</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope></search><sort><creationdate>20231213</creationdate><title>Exploring the Quantum Spectral Curve for AdS3/CFT2</title><author>Cavaglià, Andrea ; Ekhammar, Simon ; Gromov, Nikolay ; Ryan, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-25382700b14aa29b4ae617ca0e4568502660457a9ae56e1b4572eab0462061da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AdS-CFT Correspondence</topic><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Integrable Field Theories</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum numbers</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Singularity (mathematics)</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavaglià, Andrea</creatorcontrib><creatorcontrib>Ekhammar, Simon</creatorcontrib><creatorcontrib>Gromov, Nikolay</creatorcontrib><creatorcontrib>Ryan, Paul</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavaglià, Andrea</au><au>Ekhammar, Simon</au><au>Gromov, Nikolay</au><au>Ryan, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Quantum Spectral Curve for AdS3/CFT2</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2023-12-13</date><risdate>2023</risdate><volume>2023</volume><issue>12</issue><spage>89</spage><epage>38</epage><pages>89-38</pages><artnum>89</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
Despite the rich and fruitful history of the integrability approach to string theory on the AdS
3
× S
3
× T
4
background, it has not been possible to extract many concrete predictions from integrability, except in a strict asymptotic regime of large quantum numbers, due to the severity of wrapping effects. The situation changed radically with two independent and identical proposals for the Quantum Spectral Curve (QSC) for this system in a background of pure Ramond-Ramond flux. In other integrable superstring backgrounds there is compelling evidence that this formulation captures all wrapping effects exactly and describes the full planar spectrum. This great success motivates us to study the new proposed QSC and develop methods to extract from it concrete predictions for spectral data. The AdS
3
× S
3
× T
4
case presents a significant novel feature and challenge compared to its higher-dimensional analogues — massless modes. It has been conjectured that these manifest themselves in a new property of this QSC: the non-quadratic nature of the branch-cut singularities of the QSC Q-functions. This feature implies new technical challenges in solving the QSC equations as compared to the well-studied case of
N
= 4 SYM. In this paper we resolve these difficulties and obtain the first ever predictions for unprotected string excitations in the planar limit with finite quantum numbers and RR flux. We explain how to extract a systematic expansion around the analogue of the weak ’t Hooft coupling limit in
N
= 4 SYM and also obtain high-precision numerical results. These concrete data and others obtainable from the QSC could help to identify the so-far mysterious dual CFT.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP12(2023)089</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2023-12, Vol.2023 (12), p.89-38, Article 89 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5ad6c5d541de43288154a4b7a829f78b |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | AdS-CFT Correspondence Classical and Quantum Gravitation Elementary Particles High energy physics Integrable Field Theories Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum numbers Quantum Physics Regular Article - Theoretical Physics Relativity Theory Singularity (mathematics) String Theory |
title | Exploring the Quantum Spectral Curve for AdS3/CFT2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Quantum%20Spectral%20Curve%20for%20AdS3/CFT2&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Cavagli%C3%A0,%20Andrea&rft.date=2023-12-13&rft.volume=2023&rft.issue=12&rft.spage=89&rft.epage=38&rft.pages=89-38&rft.artnum=89&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP12(2023)089&rft_dat=%3Cproquest_doaj_%3E2904480986%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-25382700b14aa29b4ae617ca0e4568502660457a9ae56e1b4572eab0462061da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904480986&rft_id=info:pmid/&rfr_iscdi=true |