Loading…
Time-varying data processing with nonvolatile memristor-based temporal kernel
Recent advances in physical reservoir computing, which is a type of temporal kernel, have made it possible to perform complicated timing-related tasks using a linear classifier. However, the fixed reservoir dynamics in previous studies have limited application fields. In this study, temporal kernel...
Saved in:
Published in: | Nature communications 2021-09, Vol.12 (1), p.5727-5727, Article 5727 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-832c9b10e6af2d42b05a7c6f407686de21868d036de5082b983e80138d557b1a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-832c9b10e6af2d42b05a7c6f407686de21868d036de5082b983e80138d557b1a3 |
container_end_page | 5727 |
container_issue | 1 |
container_start_page | 5727 |
container_title | Nature communications |
container_volume | 12 |
creator | Jang, Yoon Ho Kim, Woohyun Kim, Jihun Woo, Kyung Seok Lee, Hyun Jae Jeon, Jeong Woo Shim, Sung Keun Han, Janguk Hwang, Cheol Seong |
description | Recent advances in physical reservoir computing, which is a type of temporal kernel, have made it possible to perform complicated timing-related tasks using a linear classifier. However, the fixed reservoir dynamics in previous studies have limited application fields. In this study, temporal kernel computing was implemented with a physical kernel that consisted of a W/HfO
2
/TiN memristor, a capacitor, and a resistor, in which the kernel dynamics could be arbitrarily controlled by changing the circuit parameters. After the capability of the temporal kernel to identify the static MNIST data was proven, the system was adopted to recognize the sequential data, ultrasound (malignancy of lesions) and electrocardiogram (arrhythmia), that had a significantly different time constant (10
−7
vs. 1 s). The suggested system feasibly performed the tasks by simply varying the capacitance and resistance. These functionalities demonstrate the high adaptability of the present temporal kernel compared to the previous ones.
Recently there has been an interest in utilising memristors as physical temporal kernels. Here, Jang
et al
demonstrate a physical temporal kernel using a memristor combined with a capacitor and resistor, where the additional circuit elements can be varied to allow the system to tackle a diverse range of tasks. |
doi_str_mv | 10.1038/s41467-021-25925-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5ae0334dfbfd4726836aa82657d7df91</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5ae0334dfbfd4726836aa82657d7df91</doaj_id><sourcerecordid>2578774813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-832c9b10e6af2d42b05a7c6f407686de21868d036de5082b983e80138d557b1a3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiNE1Valf6AHFIkLF4O_7VyQUAVtpSIu7dly4snWS2Ivtncr_j3eppSWA774Y955PDNv05wR_IFgpj9mTrhUCFOCqOioQOJVc0wxJ4goyl4_Ox81pzmvcV2sI5rzw-aIcdExjfFx8-3Gz4B2Nv3yYdU6W2y7SXGAnPf3e1_u2hDDLk62-AnaGebkc4kJ9TaDawvMm5js1P6AFGB60xyMdspw-rifNLdfv9ycX6Lr7xdX55-v0SA4LkgzOnQ9wSDtSB2nPRZWDXLkWEktHVCipXaY1aPAmvadZqAxYdoJoXpi2UlztXBdtGuzSX6uDZhovXl4iGllbCp-mMAIC5gx7sZ-dFxRqZm0VlMplFNu7EhlfVpYm20_gxsglNrQC-jLSPB3ZhV3RvM6TKYq4P0jIMWfW8jFzD4PME02QNxmQ4XSSnFNWJW--0e6jtsU6qj2KtURSei-IrqohhRzTjA-FUOw2ZtvFvNNNd88mG9ETXr7vI2nlD9WVwFbBLmGwgrS37__g_0NsYy6Bg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577916121</pqid></control><display><type>article</type><title>Time-varying data processing with nonvolatile memristor-based temporal kernel</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jang, Yoon Ho ; Kim, Woohyun ; Kim, Jihun ; Woo, Kyung Seok ; Lee, Hyun Jae ; Jeon, Jeong Woo ; Shim, Sung Keun ; Han, Janguk ; Hwang, Cheol Seong</creator><creatorcontrib>Jang, Yoon Ho ; Kim, Woohyun ; Kim, Jihun ; Woo, Kyung Seok ; Lee, Hyun Jae ; Jeon, Jeong Woo ; Shim, Sung Keun ; Han, Janguk ; Hwang, Cheol Seong</creatorcontrib><description>Recent advances in physical reservoir computing, which is a type of temporal kernel, have made it possible to perform complicated timing-related tasks using a linear classifier. However, the fixed reservoir dynamics in previous studies have limited application fields. In this study, temporal kernel computing was implemented with a physical kernel that consisted of a W/HfO
2
/TiN memristor, a capacitor, and a resistor, in which the kernel dynamics could be arbitrarily controlled by changing the circuit parameters. After the capability of the temporal kernel to identify the static MNIST data was proven, the system was adopted to recognize the sequential data, ultrasound (malignancy of lesions) and electrocardiogram (arrhythmia), that had a significantly different time constant (10
−7
vs. 1 s). The suggested system feasibly performed the tasks by simply varying the capacitance and resistance. These functionalities demonstrate the high adaptability of the present temporal kernel compared to the previous ones.
Recently there has been an interest in utilising memristors as physical temporal kernels. Here, Jang
et al
demonstrate a physical temporal kernel using a memristor combined with a capacitor and resistor, where the additional circuit elements can be varied to allow the system to tackle a diverse range of tasks.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-25925-5</identifier><identifier>PMID: 34593800</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/925/927/1007 ; Adaptability ; Arrhythmia ; Bias ; Capacitance ; Capacitors ; Circuits ; Data processing ; EKG ; Electrocardiography ; Humanities and Social Sciences ; Information processing ; Kernels ; Malignancy ; Memristors ; multidisciplinary ; Neural networks ; Parameter identification ; Science ; Science (multidisciplinary) ; Semiconductor research ; Time constant</subject><ispartof>Nature communications, 2021-09, Vol.12 (1), p.5727-5727, Article 5727</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-832c9b10e6af2d42b05a7c6f407686de21868d036de5082b983e80138d557b1a3</citedby><cites>FETCH-LOGICAL-c540t-832c9b10e6af2d42b05a7c6f407686de21868d036de5082b983e80138d557b1a3</cites><orcidid>0000-0001-7578-4813 ; 0000-0002-6254-9758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2577916121/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2577916121?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34593800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jang, Yoon Ho</creatorcontrib><creatorcontrib>Kim, Woohyun</creatorcontrib><creatorcontrib>Kim, Jihun</creatorcontrib><creatorcontrib>Woo, Kyung Seok</creatorcontrib><creatorcontrib>Lee, Hyun Jae</creatorcontrib><creatorcontrib>Jeon, Jeong Woo</creatorcontrib><creatorcontrib>Shim, Sung Keun</creatorcontrib><creatorcontrib>Han, Janguk</creatorcontrib><creatorcontrib>Hwang, Cheol Seong</creatorcontrib><title>Time-varying data processing with nonvolatile memristor-based temporal kernel</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Recent advances in physical reservoir computing, which is a type of temporal kernel, have made it possible to perform complicated timing-related tasks using a linear classifier. However, the fixed reservoir dynamics in previous studies have limited application fields. In this study, temporal kernel computing was implemented with a physical kernel that consisted of a W/HfO
2
/TiN memristor, a capacitor, and a resistor, in which the kernel dynamics could be arbitrarily controlled by changing the circuit parameters. After the capability of the temporal kernel to identify the static MNIST data was proven, the system was adopted to recognize the sequential data, ultrasound (malignancy of lesions) and electrocardiogram (arrhythmia), that had a significantly different time constant (10
−7
vs. 1 s). The suggested system feasibly performed the tasks by simply varying the capacitance and resistance. These functionalities demonstrate the high adaptability of the present temporal kernel compared to the previous ones.
Recently there has been an interest in utilising memristors as physical temporal kernels. Here, Jang
et al
demonstrate a physical temporal kernel using a memristor combined with a capacitor and resistor, where the additional circuit elements can be varied to allow the system to tackle a diverse range of tasks.</description><subject>639/301/1005/1007</subject><subject>639/925/927/1007</subject><subject>Adaptability</subject><subject>Arrhythmia</subject><subject>Bias</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Circuits</subject><subject>Data processing</subject><subject>EKG</subject><subject>Electrocardiography</subject><subject>Humanities and Social Sciences</subject><subject>Information processing</subject><subject>Kernels</subject><subject>Malignancy</subject><subject>Memristors</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Parameter identification</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductor research</subject><subject>Time constant</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiNE1Valf6AHFIkLF4O_7VyQUAVtpSIu7dly4snWS2Ivtncr_j3eppSWA774Y955PDNv05wR_IFgpj9mTrhUCFOCqOioQOJVc0wxJ4goyl4_Ox81pzmvcV2sI5rzw-aIcdExjfFx8-3Gz4B2Nv3yYdU6W2y7SXGAnPf3e1_u2hDDLk62-AnaGebkc4kJ9TaDawvMm5js1P6AFGB60xyMdspw-rifNLdfv9ycX6Lr7xdX55-v0SA4LkgzOnQ9wSDtSB2nPRZWDXLkWEktHVCipXaY1aPAmvadZqAxYdoJoXpi2UlztXBdtGuzSX6uDZhovXl4iGllbCp-mMAIC5gx7sZ-dFxRqZm0VlMplFNu7EhlfVpYm20_gxsglNrQC-jLSPB3ZhV3RvM6TKYq4P0jIMWfW8jFzD4PME02QNxmQ4XSSnFNWJW--0e6jtsU6qj2KtURSei-IrqohhRzTjA-FUOw2ZtvFvNNNd88mG9ETXr7vI2nlD9WVwFbBLmGwgrS37__g_0NsYy6Bg</recordid><startdate>20210930</startdate><enddate>20210930</enddate><creator>Jang, Yoon Ho</creator><creator>Kim, Woohyun</creator><creator>Kim, Jihun</creator><creator>Woo, Kyung Seok</creator><creator>Lee, Hyun Jae</creator><creator>Jeon, Jeong Woo</creator><creator>Shim, Sung Keun</creator><creator>Han, Janguk</creator><creator>Hwang, Cheol Seong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7578-4813</orcidid><orcidid>https://orcid.org/0000-0002-6254-9758</orcidid></search><sort><creationdate>20210930</creationdate><title>Time-varying data processing with nonvolatile memristor-based temporal kernel</title><author>Jang, Yoon Ho ; Kim, Woohyun ; Kim, Jihun ; Woo, Kyung Seok ; Lee, Hyun Jae ; Jeon, Jeong Woo ; Shim, Sung Keun ; Han, Janguk ; Hwang, Cheol Seong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-832c9b10e6af2d42b05a7c6f407686de21868d036de5082b983e80138d557b1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/1005/1007</topic><topic>639/925/927/1007</topic><topic>Adaptability</topic><topic>Arrhythmia</topic><topic>Bias</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Circuits</topic><topic>Data processing</topic><topic>EKG</topic><topic>Electrocardiography</topic><topic>Humanities and Social Sciences</topic><topic>Information processing</topic><topic>Kernels</topic><topic>Malignancy</topic><topic>Memristors</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Parameter identification</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductor research</topic><topic>Time constant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Yoon Ho</creatorcontrib><creatorcontrib>Kim, Woohyun</creatorcontrib><creatorcontrib>Kim, Jihun</creatorcontrib><creatorcontrib>Woo, Kyung Seok</creatorcontrib><creatorcontrib>Lee, Hyun Jae</creatorcontrib><creatorcontrib>Jeon, Jeong Woo</creatorcontrib><creatorcontrib>Shim, Sung Keun</creatorcontrib><creatorcontrib>Han, Janguk</creatorcontrib><creatorcontrib>Hwang, Cheol Seong</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Yoon Ho</au><au>Kim, Woohyun</au><au>Kim, Jihun</au><au>Woo, Kyung Seok</au><au>Lee, Hyun Jae</au><au>Jeon, Jeong Woo</au><au>Shim, Sung Keun</au><au>Han, Janguk</au><au>Hwang, Cheol Seong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-varying data processing with nonvolatile memristor-based temporal kernel</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-09-30</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>5727</spage><epage>5727</epage><pages>5727-5727</pages><artnum>5727</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Recent advances in physical reservoir computing, which is a type of temporal kernel, have made it possible to perform complicated timing-related tasks using a linear classifier. However, the fixed reservoir dynamics in previous studies have limited application fields. In this study, temporal kernel computing was implemented with a physical kernel that consisted of a W/HfO
2
/TiN memristor, a capacitor, and a resistor, in which the kernel dynamics could be arbitrarily controlled by changing the circuit parameters. After the capability of the temporal kernel to identify the static MNIST data was proven, the system was adopted to recognize the sequential data, ultrasound (malignancy of lesions) and electrocardiogram (arrhythmia), that had a significantly different time constant (10
−7
vs. 1 s). The suggested system feasibly performed the tasks by simply varying the capacitance and resistance. These functionalities demonstrate the high adaptability of the present temporal kernel compared to the previous ones.
Recently there has been an interest in utilising memristors as physical temporal kernels. Here, Jang
et al
demonstrate a physical temporal kernel using a memristor combined with a capacitor and resistor, where the additional circuit elements can be varied to allow the system to tackle a diverse range of tasks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34593800</pmid><doi>10.1038/s41467-021-25925-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7578-4813</orcidid><orcidid>https://orcid.org/0000-0002-6254-9758</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-09, Vol.12 (1), p.5727-5727, Article 5727 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5ae0334dfbfd4726836aa82657d7df91 |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/1005/1007 639/925/927/1007 Adaptability Arrhythmia Bias Capacitance Capacitors Circuits Data processing EKG Electrocardiography Humanities and Social Sciences Information processing Kernels Malignancy Memristors multidisciplinary Neural networks Parameter identification Science Science (multidisciplinary) Semiconductor research Time constant |
title | Time-varying data processing with nonvolatile memristor-based temporal kernel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-varying%20data%20processing%20with%20nonvolatile%20memristor-based%20temporal%20kernel&rft.jtitle=Nature%20communications&rft.au=Jang,%20Yoon%20Ho&rft.date=2021-09-30&rft.volume=12&rft.issue=1&rft.spage=5727&rft.epage=5727&rft.pages=5727-5727&rft.artnum=5727&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-25925-5&rft_dat=%3Cproquest_doaj_%3E2578774813%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-832c9b10e6af2d42b05a7c6f407686de21868d036de5082b983e80138d557b1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2577916121&rft_id=info:pmid/34593800&rfr_iscdi=true |