Loading…

Time-varying data processing with nonvolatile memristor-based temporal kernel

Recent advances in physical reservoir computing, which is a type of temporal kernel, have made it possible to perform complicated timing-related tasks using a linear classifier. However, the fixed reservoir dynamics in previous studies have limited application fields. In this study, temporal kernel...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-09, Vol.12 (1), p.5727-5727, Article 5727
Main Authors: Jang, Yoon Ho, Kim, Woohyun, Kim, Jihun, Woo, Kyung Seok, Lee, Hyun Jae, Jeon, Jeong Woo, Shim, Sung Keun, Han, Janguk, Hwang, Cheol Seong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-832c9b10e6af2d42b05a7c6f407686de21868d036de5082b983e80138d557b1a3
cites cdi_FETCH-LOGICAL-c540t-832c9b10e6af2d42b05a7c6f407686de21868d036de5082b983e80138d557b1a3
container_end_page 5727
container_issue 1
container_start_page 5727
container_title Nature communications
container_volume 12
creator Jang, Yoon Ho
Kim, Woohyun
Kim, Jihun
Woo, Kyung Seok
Lee, Hyun Jae
Jeon, Jeong Woo
Shim, Sung Keun
Han, Janguk
Hwang, Cheol Seong
description Recent advances in physical reservoir computing, which is a type of temporal kernel, have made it possible to perform complicated timing-related tasks using a linear classifier. However, the fixed reservoir dynamics in previous studies have limited application fields. In this study, temporal kernel computing was implemented with a physical kernel that consisted of a W/HfO 2 /TiN memristor, a capacitor, and a resistor, in which the kernel dynamics could be arbitrarily controlled by changing the circuit parameters. After the capability of the temporal kernel to identify the static MNIST data was proven, the system was adopted to recognize the sequential data, ultrasound (malignancy of lesions) and electrocardiogram (arrhythmia), that had a significantly different time constant (10 −7 vs. 1 s). The suggested system feasibly performed the tasks by simply varying the capacitance and resistance. These functionalities demonstrate the high adaptability of the present temporal kernel compared to the previous ones. Recently there has been an interest in utilising memristors as physical temporal kernels. Here, Jang et al demonstrate a physical temporal kernel using a memristor combined with a capacitor and resistor, where the additional circuit elements can be varied to allow the system to tackle a diverse range of tasks.
doi_str_mv 10.1038/s41467-021-25925-5
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5ae0334dfbfd4726836aa82657d7df91</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5ae0334dfbfd4726836aa82657d7df91</doaj_id><sourcerecordid>2578774813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-832c9b10e6af2d42b05a7c6f407686de21868d036de5082b983e80138d557b1a3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiNE1Valf6AHFIkLF4O_7VyQUAVtpSIu7dly4snWS2Ivtncr_j3eppSWA774Y955PDNv05wR_IFgpj9mTrhUCFOCqOioQOJVc0wxJ4goyl4_Ox81pzmvcV2sI5rzw-aIcdExjfFx8-3Gz4B2Nv3yYdU6W2y7SXGAnPf3e1_u2hDDLk62-AnaGebkc4kJ9TaDawvMm5js1P6AFGB60xyMdspw-rifNLdfv9ycX6Lr7xdX55-v0SA4LkgzOnQ9wSDtSB2nPRZWDXLkWEktHVCipXaY1aPAmvadZqAxYdoJoXpi2UlztXBdtGuzSX6uDZhovXl4iGllbCp-mMAIC5gx7sZ-dFxRqZm0VlMplFNu7EhlfVpYm20_gxsglNrQC-jLSPB3ZhV3RvM6TKYq4P0jIMWfW8jFzD4PME02QNxmQ4XSSnFNWJW--0e6jtsU6qj2KtURSei-IrqohhRzTjA-FUOw2ZtvFvNNNd88mG9ETXr7vI2nlD9WVwFbBLmGwgrS37__g_0NsYy6Bg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577916121</pqid></control><display><type>article</type><title>Time-varying data processing with nonvolatile memristor-based temporal kernel</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jang, Yoon Ho ; Kim, Woohyun ; Kim, Jihun ; Woo, Kyung Seok ; Lee, Hyun Jae ; Jeon, Jeong Woo ; Shim, Sung Keun ; Han, Janguk ; Hwang, Cheol Seong</creator><creatorcontrib>Jang, Yoon Ho ; Kim, Woohyun ; Kim, Jihun ; Woo, Kyung Seok ; Lee, Hyun Jae ; Jeon, Jeong Woo ; Shim, Sung Keun ; Han, Janguk ; Hwang, Cheol Seong</creatorcontrib><description>Recent advances in physical reservoir computing, which is a type of temporal kernel, have made it possible to perform complicated timing-related tasks using a linear classifier. However, the fixed reservoir dynamics in previous studies have limited application fields. In this study, temporal kernel computing was implemented with a physical kernel that consisted of a W/HfO 2 /TiN memristor, a capacitor, and a resistor, in which the kernel dynamics could be arbitrarily controlled by changing the circuit parameters. After the capability of the temporal kernel to identify the static MNIST data was proven, the system was adopted to recognize the sequential data, ultrasound (malignancy of lesions) and electrocardiogram (arrhythmia), that had a significantly different time constant (10 −7 vs. 1 s). The suggested system feasibly performed the tasks by simply varying the capacitance and resistance. These functionalities demonstrate the high adaptability of the present temporal kernel compared to the previous ones. Recently there has been an interest in utilising memristors as physical temporal kernels. Here, Jang et al demonstrate a physical temporal kernel using a memristor combined with a capacitor and resistor, where the additional circuit elements can be varied to allow the system to tackle a diverse range of tasks.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-25925-5</identifier><identifier>PMID: 34593800</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/925/927/1007 ; Adaptability ; Arrhythmia ; Bias ; Capacitance ; Capacitors ; Circuits ; Data processing ; EKG ; Electrocardiography ; Humanities and Social Sciences ; Information processing ; Kernels ; Malignancy ; Memristors ; multidisciplinary ; Neural networks ; Parameter identification ; Science ; Science (multidisciplinary) ; Semiconductor research ; Time constant</subject><ispartof>Nature communications, 2021-09, Vol.12 (1), p.5727-5727, Article 5727</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-832c9b10e6af2d42b05a7c6f407686de21868d036de5082b983e80138d557b1a3</citedby><cites>FETCH-LOGICAL-c540t-832c9b10e6af2d42b05a7c6f407686de21868d036de5082b983e80138d557b1a3</cites><orcidid>0000-0001-7578-4813 ; 0000-0002-6254-9758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2577916121/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2577916121?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34593800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jang, Yoon Ho</creatorcontrib><creatorcontrib>Kim, Woohyun</creatorcontrib><creatorcontrib>Kim, Jihun</creatorcontrib><creatorcontrib>Woo, Kyung Seok</creatorcontrib><creatorcontrib>Lee, Hyun Jae</creatorcontrib><creatorcontrib>Jeon, Jeong Woo</creatorcontrib><creatorcontrib>Shim, Sung Keun</creatorcontrib><creatorcontrib>Han, Janguk</creatorcontrib><creatorcontrib>Hwang, Cheol Seong</creatorcontrib><title>Time-varying data processing with nonvolatile memristor-based temporal kernel</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Recent advances in physical reservoir computing, which is a type of temporal kernel, have made it possible to perform complicated timing-related tasks using a linear classifier. However, the fixed reservoir dynamics in previous studies have limited application fields. In this study, temporal kernel computing was implemented with a physical kernel that consisted of a W/HfO 2 /TiN memristor, a capacitor, and a resistor, in which the kernel dynamics could be arbitrarily controlled by changing the circuit parameters. After the capability of the temporal kernel to identify the static MNIST data was proven, the system was adopted to recognize the sequential data, ultrasound (malignancy of lesions) and electrocardiogram (arrhythmia), that had a significantly different time constant (10 −7 vs. 1 s). The suggested system feasibly performed the tasks by simply varying the capacitance and resistance. These functionalities demonstrate the high adaptability of the present temporal kernel compared to the previous ones. Recently there has been an interest in utilising memristors as physical temporal kernels. Here, Jang et al demonstrate a physical temporal kernel using a memristor combined with a capacitor and resistor, where the additional circuit elements can be varied to allow the system to tackle a diverse range of tasks.</description><subject>639/301/1005/1007</subject><subject>639/925/927/1007</subject><subject>Adaptability</subject><subject>Arrhythmia</subject><subject>Bias</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Circuits</subject><subject>Data processing</subject><subject>EKG</subject><subject>Electrocardiography</subject><subject>Humanities and Social Sciences</subject><subject>Information processing</subject><subject>Kernels</subject><subject>Malignancy</subject><subject>Memristors</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Parameter identification</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductor research</subject><subject>Time constant</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiNE1Valf6AHFIkLF4O_7VyQUAVtpSIu7dly4snWS2Ivtncr_j3eppSWA774Y955PDNv05wR_IFgpj9mTrhUCFOCqOioQOJVc0wxJ4goyl4_Ox81pzmvcV2sI5rzw-aIcdExjfFx8-3Gz4B2Nv3yYdU6W2y7SXGAnPf3e1_u2hDDLk62-AnaGebkc4kJ9TaDawvMm5js1P6AFGB60xyMdspw-rifNLdfv9ycX6Lr7xdX55-v0SA4LkgzOnQ9wSDtSB2nPRZWDXLkWEktHVCipXaY1aPAmvadZqAxYdoJoXpi2UlztXBdtGuzSX6uDZhovXl4iGllbCp-mMAIC5gx7sZ-dFxRqZm0VlMplFNu7EhlfVpYm20_gxsglNrQC-jLSPB3ZhV3RvM6TKYq4P0jIMWfW8jFzD4PME02QNxmQ4XSSnFNWJW--0e6jtsU6qj2KtURSei-IrqohhRzTjA-FUOw2ZtvFvNNNd88mG9ETXr7vI2nlD9WVwFbBLmGwgrS37__g_0NsYy6Bg</recordid><startdate>20210930</startdate><enddate>20210930</enddate><creator>Jang, Yoon Ho</creator><creator>Kim, Woohyun</creator><creator>Kim, Jihun</creator><creator>Woo, Kyung Seok</creator><creator>Lee, Hyun Jae</creator><creator>Jeon, Jeong Woo</creator><creator>Shim, Sung Keun</creator><creator>Han, Janguk</creator><creator>Hwang, Cheol Seong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7578-4813</orcidid><orcidid>https://orcid.org/0000-0002-6254-9758</orcidid></search><sort><creationdate>20210930</creationdate><title>Time-varying data processing with nonvolatile memristor-based temporal kernel</title><author>Jang, Yoon Ho ; Kim, Woohyun ; Kim, Jihun ; Woo, Kyung Seok ; Lee, Hyun Jae ; Jeon, Jeong Woo ; Shim, Sung Keun ; Han, Janguk ; Hwang, Cheol Seong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-832c9b10e6af2d42b05a7c6f407686de21868d036de5082b983e80138d557b1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/1005/1007</topic><topic>639/925/927/1007</topic><topic>Adaptability</topic><topic>Arrhythmia</topic><topic>Bias</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Circuits</topic><topic>Data processing</topic><topic>EKG</topic><topic>Electrocardiography</topic><topic>Humanities and Social Sciences</topic><topic>Information processing</topic><topic>Kernels</topic><topic>Malignancy</topic><topic>Memristors</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Parameter identification</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductor research</topic><topic>Time constant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Yoon Ho</creatorcontrib><creatorcontrib>Kim, Woohyun</creatorcontrib><creatorcontrib>Kim, Jihun</creatorcontrib><creatorcontrib>Woo, Kyung Seok</creatorcontrib><creatorcontrib>Lee, Hyun Jae</creatorcontrib><creatorcontrib>Jeon, Jeong Woo</creatorcontrib><creatorcontrib>Shim, Sung Keun</creatorcontrib><creatorcontrib>Han, Janguk</creatorcontrib><creatorcontrib>Hwang, Cheol Seong</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Yoon Ho</au><au>Kim, Woohyun</au><au>Kim, Jihun</au><au>Woo, Kyung Seok</au><au>Lee, Hyun Jae</au><au>Jeon, Jeong Woo</au><au>Shim, Sung Keun</au><au>Han, Janguk</au><au>Hwang, Cheol Seong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-varying data processing with nonvolatile memristor-based temporal kernel</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-09-30</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>5727</spage><epage>5727</epage><pages>5727-5727</pages><artnum>5727</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Recent advances in physical reservoir computing, which is a type of temporal kernel, have made it possible to perform complicated timing-related tasks using a linear classifier. However, the fixed reservoir dynamics in previous studies have limited application fields. In this study, temporal kernel computing was implemented with a physical kernel that consisted of a W/HfO 2 /TiN memristor, a capacitor, and a resistor, in which the kernel dynamics could be arbitrarily controlled by changing the circuit parameters. After the capability of the temporal kernel to identify the static MNIST data was proven, the system was adopted to recognize the sequential data, ultrasound (malignancy of lesions) and electrocardiogram (arrhythmia), that had a significantly different time constant (10 −7 vs. 1 s). The suggested system feasibly performed the tasks by simply varying the capacitance and resistance. These functionalities demonstrate the high adaptability of the present temporal kernel compared to the previous ones. Recently there has been an interest in utilising memristors as physical temporal kernels. Here, Jang et al demonstrate a physical temporal kernel using a memristor combined with a capacitor and resistor, where the additional circuit elements can be varied to allow the system to tackle a diverse range of tasks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34593800</pmid><doi>10.1038/s41467-021-25925-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7578-4813</orcidid><orcidid>https://orcid.org/0000-0002-6254-9758</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2021-09, Vol.12 (1), p.5727-5727, Article 5727
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5ae0334dfbfd4726836aa82657d7df91
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/1005/1007
639/925/927/1007
Adaptability
Arrhythmia
Bias
Capacitance
Capacitors
Circuits
Data processing
EKG
Electrocardiography
Humanities and Social Sciences
Information processing
Kernels
Malignancy
Memristors
multidisciplinary
Neural networks
Parameter identification
Science
Science (multidisciplinary)
Semiconductor research
Time constant
title Time-varying data processing with nonvolatile memristor-based temporal kernel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-varying%20data%20processing%20with%20nonvolatile%20memristor-based%20temporal%20kernel&rft.jtitle=Nature%20communications&rft.au=Jang,%20Yoon%20Ho&rft.date=2021-09-30&rft.volume=12&rft.issue=1&rft.spage=5727&rft.epage=5727&rft.pages=5727-5727&rft.artnum=5727&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-25925-5&rft_dat=%3Cproquest_doaj_%3E2578774813%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-832c9b10e6af2d42b05a7c6f407686de21868d036de5082b983e80138d557b1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2577916121&rft_id=info:pmid/34593800&rfr_iscdi=true