Loading…
Harmonic Detection for Shunt Active Power Filter Using ADALINE Neural Network
This paper presents an efficient harmonic detection for real-time generation of the reference current fed to a shunt active power filter using the ADALINE neural network. This proposed method is a single layer with 101 nodes generating the coefficients referred to as weights of the reference current...
Saved in:
Published in: | Energies (Basel) 2021-07, Vol.14 (14), p.4351 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-17548206e5717c817689a2ca40d62885536e32fa1d4e9ac22c2d526155bd90cc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-17548206e5717c817689a2ca40d62885536e32fa1d4e9ac22c2d526155bd90cc3 |
container_end_page | |
container_issue | 14 |
container_start_page | 4351 |
container_title | Energies (Basel) |
container_volume | 14 |
creator | Janpong, Sarawut Areerak, Kongpol Areerak, Kongpan |
description | This paper presents an efficient harmonic detection for real-time generation of the reference current fed to a shunt active power filter using the ADALINE neural network. This proposed method is a single layer with 101 nodes generating the coefficients referred to as weights of the reference current model. It effectively overcomes the drawback of the current technology, which is instantaneous power theory (PQ). The proposed method was implemented on the TMS320F28335 DSP board and tested against MATLAB with Simulink as a hardware-in-loop (HIL) structure. This method gives a good performance by producing a precise reference current in a short period with uncomplicated calculation. It also efficiently can eliminate individual harmonic current. The achieved percentage of total harmonic distortion (%THD) in the current is reduced following the IEEE standard, while the power factor can be maintained to unity. |
doi_str_mv | 10.3390/en14144351 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5af5bfd5c876451981b0a81c2df88ffe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5af5bfd5c876451981b0a81c2df88ffe</doaj_id><sourcerecordid>2554506440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-17548206e5717c817689a2ca40d62885536e32fa1d4e9ac22c2d526155bd90cc3</originalsourceid><addsrcrecordid>eNpNkN1LwzAUxYMoOOZe_AsCvgnT3Hw1fSz7cIM5Bd1zyNJkdnbNTFuH_73ViXpfzuVw-N3LQegSyA1jKbl1FXDgnAk4QT1IUzkEkrDTf_s5GtT1lnTDGDDGeuh-ZuIuVIXFY9c42xShwj5E_PTSVg3OOuPd4cdwcBFPi7LpZFUX1QZn42wxX07w0rXRlJ00hxBfL9CZN2XtBj_aR6vp5Hk0Gy4e7uajbDG0TEIzhERwRYl0IoHEKkikSg21hpNcUqWEYNIx6g3k3KXGUmppLqgEIdZ5SqxlfTQ_cvNgtnofi52JHzqYQn8bIW60iU1hS6eF8WLtc2FVIrmAVMGaGAUd0SvlvetYV0fWPoa31tWN3oY2Vt37mgrBBZGcky51fUzZGOo6Ov97FYj-al__tc8-AVGodAI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554506440</pqid></control><display><type>article</type><title>Harmonic Detection for Shunt Active Power Filter Using ADALINE Neural Network</title><source>ProQuest - Publicly Available Content Database</source><creator>Janpong, Sarawut ; Areerak, Kongpol ; Areerak, Kongpan</creator><creatorcontrib>Janpong, Sarawut ; Areerak, Kongpol ; Areerak, Kongpan</creatorcontrib><description>This paper presents an efficient harmonic detection for real-time generation of the reference current fed to a shunt active power filter using the ADALINE neural network. This proposed method is a single layer with 101 nodes generating the coefficients referred to as weights of the reference current model. It effectively overcomes the drawback of the current technology, which is instantaneous power theory (PQ). The proposed method was implemented on the TMS320F28335 DSP board and tested against MATLAB with Simulink as a hardware-in-loop (HIL) structure. This method gives a good performance by producing a precise reference current in a short period with uncomplicated calculation. It also efficiently can eliminate individual harmonic current. The achieved percentage of total harmonic distortion (%THD) in the current is reduced following the IEEE standard, while the power factor can be maintained to unity.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en14144351</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>active power filter ; ADALINE neural network ; Bias ; Electricity distribution ; Harmonic distortion ; harmonic elimination ; instantaneous power theory ; Methods ; Neural networks ; Power factor ; Simulation</subject><ispartof>Energies (Basel), 2021-07, Vol.14 (14), p.4351</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-17548206e5717c817689a2ca40d62885536e32fa1d4e9ac22c2d526155bd90cc3</citedby><cites>FETCH-LOGICAL-c361t-17548206e5717c817689a2ca40d62885536e32fa1d4e9ac22c2d526155bd90cc3</cites><orcidid>0000-0002-4669-8964</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2554506440/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2554506440?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Janpong, Sarawut</creatorcontrib><creatorcontrib>Areerak, Kongpol</creatorcontrib><creatorcontrib>Areerak, Kongpan</creatorcontrib><title>Harmonic Detection for Shunt Active Power Filter Using ADALINE Neural Network</title><title>Energies (Basel)</title><description>This paper presents an efficient harmonic detection for real-time generation of the reference current fed to a shunt active power filter using the ADALINE neural network. This proposed method is a single layer with 101 nodes generating the coefficients referred to as weights of the reference current model. It effectively overcomes the drawback of the current technology, which is instantaneous power theory (PQ). The proposed method was implemented on the TMS320F28335 DSP board and tested against MATLAB with Simulink as a hardware-in-loop (HIL) structure. This method gives a good performance by producing a precise reference current in a short period with uncomplicated calculation. It also efficiently can eliminate individual harmonic current. The achieved percentage of total harmonic distortion (%THD) in the current is reduced following the IEEE standard, while the power factor can be maintained to unity.</description><subject>active power filter</subject><subject>ADALINE neural network</subject><subject>Bias</subject><subject>Electricity distribution</subject><subject>Harmonic distortion</subject><subject>harmonic elimination</subject><subject>instantaneous power theory</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Power factor</subject><subject>Simulation</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkN1LwzAUxYMoOOZe_AsCvgnT3Hw1fSz7cIM5Bd1zyNJkdnbNTFuH_73ViXpfzuVw-N3LQegSyA1jKbl1FXDgnAk4QT1IUzkEkrDTf_s5GtT1lnTDGDDGeuh-ZuIuVIXFY9c42xShwj5E_PTSVg3OOuPd4cdwcBFPi7LpZFUX1QZn42wxX07w0rXRlJ00hxBfL9CZN2XtBj_aR6vp5Hk0Gy4e7uajbDG0TEIzhERwRYl0IoHEKkikSg21hpNcUqWEYNIx6g3k3KXGUmppLqgEIdZ5SqxlfTQ_cvNgtnofi52JHzqYQn8bIW60iU1hS6eF8WLtc2FVIrmAVMGaGAUd0SvlvetYV0fWPoa31tWN3oY2Vt37mgrBBZGcky51fUzZGOo6Ov97FYj-al__tc8-AVGodAI</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Janpong, Sarawut</creator><creator>Areerak, Kongpol</creator><creator>Areerak, Kongpan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4669-8964</orcidid></search><sort><creationdate>20210701</creationdate><title>Harmonic Detection for Shunt Active Power Filter Using ADALINE Neural Network</title><author>Janpong, Sarawut ; Areerak, Kongpol ; Areerak, Kongpan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-17548206e5717c817689a2ca40d62885536e32fa1d4e9ac22c2d526155bd90cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>active power filter</topic><topic>ADALINE neural network</topic><topic>Bias</topic><topic>Electricity distribution</topic><topic>Harmonic distortion</topic><topic>harmonic elimination</topic><topic>instantaneous power theory</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Power factor</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janpong, Sarawut</creatorcontrib><creatorcontrib>Areerak, Kongpol</creatorcontrib><creatorcontrib>Areerak, Kongpan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janpong, Sarawut</au><au>Areerak, Kongpol</au><au>Areerak, Kongpan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harmonic Detection for Shunt Active Power Filter Using ADALINE Neural Network</atitle><jtitle>Energies (Basel)</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>14</volume><issue>14</issue><spage>4351</spage><pages>4351-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>This paper presents an efficient harmonic detection for real-time generation of the reference current fed to a shunt active power filter using the ADALINE neural network. This proposed method is a single layer with 101 nodes generating the coefficients referred to as weights of the reference current model. It effectively overcomes the drawback of the current technology, which is instantaneous power theory (PQ). The proposed method was implemented on the TMS320F28335 DSP board and tested against MATLAB with Simulink as a hardware-in-loop (HIL) structure. This method gives a good performance by producing a precise reference current in a short period with uncomplicated calculation. It also efficiently can eliminate individual harmonic current. The achieved percentage of total harmonic distortion (%THD) in the current is reduced following the IEEE standard, while the power factor can be maintained to unity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en14144351</doi><orcidid>https://orcid.org/0000-0002-4669-8964</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2021-07, Vol.14 (14), p.4351 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5af5bfd5c876451981b0a81c2df88ffe |
source | ProQuest - Publicly Available Content Database |
subjects | active power filter ADALINE neural network Bias Electricity distribution Harmonic distortion harmonic elimination instantaneous power theory Methods Neural networks Power factor Simulation |
title | Harmonic Detection for Shunt Active Power Filter Using ADALINE Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harmonic%20Detection%20for%20Shunt%20Active%20Power%20Filter%20Using%20ADALINE%20Neural%20Network&rft.jtitle=Energies%20(Basel)&rft.au=Janpong,%20Sarawut&rft.date=2021-07-01&rft.volume=14&rft.issue=14&rft.spage=4351&rft.pages=4351-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en14144351&rft_dat=%3Cproquest_doaj_%3E2554506440%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-17548206e5717c817689a2ca40d62885536e32fa1d4e9ac22c2d526155bd90cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554506440&rft_id=info:pmid/&rfr_iscdi=true |