Loading…

Harmonic Detection for Shunt Active Power Filter Using ADALINE Neural Network

This paper presents an efficient harmonic detection for real-time generation of the reference current fed to a shunt active power filter using the ADALINE neural network. This proposed method is a single layer with 101 nodes generating the coefficients referred to as weights of the reference current...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2021-07, Vol.14 (14), p.4351
Main Authors: Janpong, Sarawut, Areerak, Kongpol, Areerak, Kongpan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-17548206e5717c817689a2ca40d62885536e32fa1d4e9ac22c2d526155bd90cc3
cites cdi_FETCH-LOGICAL-c361t-17548206e5717c817689a2ca40d62885536e32fa1d4e9ac22c2d526155bd90cc3
container_end_page
container_issue 14
container_start_page 4351
container_title Energies (Basel)
container_volume 14
creator Janpong, Sarawut
Areerak, Kongpol
Areerak, Kongpan
description This paper presents an efficient harmonic detection for real-time generation of the reference current fed to a shunt active power filter using the ADALINE neural network. This proposed method is a single layer with 101 nodes generating the coefficients referred to as weights of the reference current model. It effectively overcomes the drawback of the current technology, which is instantaneous power theory (PQ). The proposed method was implemented on the TMS320F28335 DSP board and tested against MATLAB with Simulink as a hardware-in-loop (HIL) structure. This method gives a good performance by producing a precise reference current in a short period with uncomplicated calculation. It also efficiently can eliminate individual harmonic current. The achieved percentage of total harmonic distortion (%THD) in the current is reduced following the IEEE standard, while the power factor can be maintained to unity.
doi_str_mv 10.3390/en14144351
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5af5bfd5c876451981b0a81c2df88ffe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5af5bfd5c876451981b0a81c2df88ffe</doaj_id><sourcerecordid>2554506440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-17548206e5717c817689a2ca40d62885536e32fa1d4e9ac22c2d526155bd90cc3</originalsourceid><addsrcrecordid>eNpNkN1LwzAUxYMoOOZe_AsCvgnT3Hw1fSz7cIM5Bd1zyNJkdnbNTFuH_73ViXpfzuVw-N3LQegSyA1jKbl1FXDgnAk4QT1IUzkEkrDTf_s5GtT1lnTDGDDGeuh-ZuIuVIXFY9c42xShwj5E_PTSVg3OOuPd4cdwcBFPi7LpZFUX1QZn42wxX07w0rXRlJ00hxBfL9CZN2XtBj_aR6vp5Hk0Gy4e7uajbDG0TEIzhERwRYl0IoHEKkikSg21hpNcUqWEYNIx6g3k3KXGUmppLqgEIdZ5SqxlfTQ_cvNgtnofi52JHzqYQn8bIW60iU1hS6eF8WLtc2FVIrmAVMGaGAUd0SvlvetYV0fWPoa31tWN3oY2Vt37mgrBBZGcky51fUzZGOo6Ov97FYj-al__tc8-AVGodAI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554506440</pqid></control><display><type>article</type><title>Harmonic Detection for Shunt Active Power Filter Using ADALINE Neural Network</title><source>ProQuest - Publicly Available Content Database</source><creator>Janpong, Sarawut ; Areerak, Kongpol ; Areerak, Kongpan</creator><creatorcontrib>Janpong, Sarawut ; Areerak, Kongpol ; Areerak, Kongpan</creatorcontrib><description>This paper presents an efficient harmonic detection for real-time generation of the reference current fed to a shunt active power filter using the ADALINE neural network. This proposed method is a single layer with 101 nodes generating the coefficients referred to as weights of the reference current model. It effectively overcomes the drawback of the current technology, which is instantaneous power theory (PQ). The proposed method was implemented on the TMS320F28335 DSP board and tested against MATLAB with Simulink as a hardware-in-loop (HIL) structure. This method gives a good performance by producing a precise reference current in a short period with uncomplicated calculation. It also efficiently can eliminate individual harmonic current. The achieved percentage of total harmonic distortion (%THD) in the current is reduced following the IEEE standard, while the power factor can be maintained to unity.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en14144351</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>active power filter ; ADALINE neural network ; Bias ; Electricity distribution ; Harmonic distortion ; harmonic elimination ; instantaneous power theory ; Methods ; Neural networks ; Power factor ; Simulation</subject><ispartof>Energies (Basel), 2021-07, Vol.14 (14), p.4351</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-17548206e5717c817689a2ca40d62885536e32fa1d4e9ac22c2d526155bd90cc3</citedby><cites>FETCH-LOGICAL-c361t-17548206e5717c817689a2ca40d62885536e32fa1d4e9ac22c2d526155bd90cc3</cites><orcidid>0000-0002-4669-8964</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2554506440/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2554506440?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Janpong, Sarawut</creatorcontrib><creatorcontrib>Areerak, Kongpol</creatorcontrib><creatorcontrib>Areerak, Kongpan</creatorcontrib><title>Harmonic Detection for Shunt Active Power Filter Using ADALINE Neural Network</title><title>Energies (Basel)</title><description>This paper presents an efficient harmonic detection for real-time generation of the reference current fed to a shunt active power filter using the ADALINE neural network. This proposed method is a single layer with 101 nodes generating the coefficients referred to as weights of the reference current model. It effectively overcomes the drawback of the current technology, which is instantaneous power theory (PQ). The proposed method was implemented on the TMS320F28335 DSP board and tested against MATLAB with Simulink as a hardware-in-loop (HIL) structure. This method gives a good performance by producing a precise reference current in a short period with uncomplicated calculation. It also efficiently can eliminate individual harmonic current. The achieved percentage of total harmonic distortion (%THD) in the current is reduced following the IEEE standard, while the power factor can be maintained to unity.</description><subject>active power filter</subject><subject>ADALINE neural network</subject><subject>Bias</subject><subject>Electricity distribution</subject><subject>Harmonic distortion</subject><subject>harmonic elimination</subject><subject>instantaneous power theory</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Power factor</subject><subject>Simulation</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkN1LwzAUxYMoOOZe_AsCvgnT3Hw1fSz7cIM5Bd1zyNJkdnbNTFuH_73ViXpfzuVw-N3LQegSyA1jKbl1FXDgnAk4QT1IUzkEkrDTf_s5GtT1lnTDGDDGeuh-ZuIuVIXFY9c42xShwj5E_PTSVg3OOuPd4cdwcBFPi7LpZFUX1QZn42wxX07w0rXRlJ00hxBfL9CZN2XtBj_aR6vp5Hk0Gy4e7uajbDG0TEIzhERwRYl0IoHEKkikSg21hpNcUqWEYNIx6g3k3KXGUmppLqgEIdZ5SqxlfTQ_cvNgtnofi52JHzqYQn8bIW60iU1hS6eF8WLtc2FVIrmAVMGaGAUd0SvlvetYV0fWPoa31tWN3oY2Vt37mgrBBZGcky51fUzZGOo6Ov97FYj-al__tc8-AVGodAI</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Janpong, Sarawut</creator><creator>Areerak, Kongpol</creator><creator>Areerak, Kongpan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4669-8964</orcidid></search><sort><creationdate>20210701</creationdate><title>Harmonic Detection for Shunt Active Power Filter Using ADALINE Neural Network</title><author>Janpong, Sarawut ; Areerak, Kongpol ; Areerak, Kongpan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-17548206e5717c817689a2ca40d62885536e32fa1d4e9ac22c2d526155bd90cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>active power filter</topic><topic>ADALINE neural network</topic><topic>Bias</topic><topic>Electricity distribution</topic><topic>Harmonic distortion</topic><topic>harmonic elimination</topic><topic>instantaneous power theory</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Power factor</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janpong, Sarawut</creatorcontrib><creatorcontrib>Areerak, Kongpol</creatorcontrib><creatorcontrib>Areerak, Kongpan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janpong, Sarawut</au><au>Areerak, Kongpol</au><au>Areerak, Kongpan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harmonic Detection for Shunt Active Power Filter Using ADALINE Neural Network</atitle><jtitle>Energies (Basel)</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>14</volume><issue>14</issue><spage>4351</spage><pages>4351-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>This paper presents an efficient harmonic detection for real-time generation of the reference current fed to a shunt active power filter using the ADALINE neural network. This proposed method is a single layer with 101 nodes generating the coefficients referred to as weights of the reference current model. It effectively overcomes the drawback of the current technology, which is instantaneous power theory (PQ). The proposed method was implemented on the TMS320F28335 DSP board and tested against MATLAB with Simulink as a hardware-in-loop (HIL) structure. This method gives a good performance by producing a precise reference current in a short period with uncomplicated calculation. It also efficiently can eliminate individual harmonic current. The achieved percentage of total harmonic distortion (%THD) in the current is reduced following the IEEE standard, while the power factor can be maintained to unity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en14144351</doi><orcidid>https://orcid.org/0000-0002-4669-8964</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2021-07, Vol.14 (14), p.4351
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5af5bfd5c876451981b0a81c2df88ffe
source ProQuest - Publicly Available Content Database
subjects active power filter
ADALINE neural network
Bias
Electricity distribution
Harmonic distortion
harmonic elimination
instantaneous power theory
Methods
Neural networks
Power factor
Simulation
title Harmonic Detection for Shunt Active Power Filter Using ADALINE Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harmonic%20Detection%20for%20Shunt%20Active%20Power%20Filter%20Using%20ADALINE%20Neural%20Network&rft.jtitle=Energies%20(Basel)&rft.au=Janpong,%20Sarawut&rft.date=2021-07-01&rft.volume=14&rft.issue=14&rft.spage=4351&rft.pages=4351-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en14144351&rft_dat=%3Cproquest_doaj_%3E2554506440%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-17548206e5717c817689a2ca40d62885536e32fa1d4e9ac22c2d526155bd90cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554506440&rft_id=info:pmid/&rfr_iscdi=true