Loading…

Maternal Resveratrol Supplementation Prevents Cognitive Decline in Senescent Mice Offspring

A variety of environmental factors contribute significantly to age-related cognitive decline and memory impairment in Alzheimer's Disease (AD) and other neurodegenerative diseases. Nutrition can alter epigenetics, improving health outcomes, which can be transmitted across generations; this proc...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2019-03, Vol.20 (5), p.1134
Main Authors: Izquierdo, Vanesa, Palomera-Ávalos, Verónica, López-Ruiz, Sergio, Canudas, Anna-Maria, Pallàs, Mercè, Griñán-Ferré, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A variety of environmental factors contribute significantly to age-related cognitive decline and memory impairment in Alzheimer's Disease (AD) and other neurodegenerative diseases. Nutrition can alter epigenetics, improving health outcomes, which can be transmitted across generations; this process is called epigenetic inheritance. We investigate the beneficial effects of maternal resveratrol supplementation in the direct exposed F1 generation and the transgenerational F2 generation. The offspring was generated from females Senescence Accelerated Mouse-Prone (SAMP8) fed a resveratrol-enriched diet for two months prior to mating. Object novel recognition and Morris Water Maze (MWM) demonstrated improvements in cognition in the 6-month-old F1 and F2 generations from resveratrol fed mothers. A significant increase in global DNA methylation with a decrease in hydroxymethylation in F1 and F2 were found. Accordingly, and gene expression changed. Methylation levels of and genes promoters raised in offspring, inducing changes in target genes expression, as well as hydrogen peroxide levels. Offspring that resulted from a resveratrol fed mother showed increase AMPKα activation, mTOR inhibition, and an increase in gene expression and Beclin-1 protein levels. Endoplasmic reticulum stress sensors were found changed both in F1 and F2 generations. Overall, our results demonstrated that maternal resveratrol supplementation could prevent cognitive impairment in the SAMP8 mice offspring through epigenetic changes and cell signaling pathways.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms20051134