Loading…

Missing data imputation of solar radiation data under different atmospheric conditions

Global solar broadband irradiance on a planar surface is measured at weather stations by pyranometers. In the case of the present research, solar radiation values from nine meteorological stations of the MeteoGalicia real-time observational network, captured and stored every ten minutes, are conside...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2014-10, Vol.14 (11), p.20382-20399
Main Authors: Turrado, Concepción Crespo, López, María Del Carmen Meizoso, Lasheras, Fernando Sánchez, Gómez, Benigno Antonio Rodríguez, Rollé, José Luis Calvo, Juez, Francisco Javier de Cos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c674t-e31c333a2f50c06ec7da67ea8a6e962d06dcf5f148d8022de0b94b49e20137c53
cites cdi_FETCH-LOGICAL-c674t-e31c333a2f50c06ec7da67ea8a6e962d06dcf5f148d8022de0b94b49e20137c53
container_end_page 20399
container_issue 11
container_start_page 20382
container_title Sensors (Basel, Switzerland)
container_volume 14
creator Turrado, Concepción Crespo
López, María Del Carmen Meizoso
Lasheras, Fernando Sánchez
Gómez, Benigno Antonio Rodríguez
Rollé, José Luis Calvo
Juez, Francisco Javier de Cos
description Global solar broadband irradiance on a planar surface is measured at weather stations by pyranometers. In the case of the present research, solar radiation values from nine meteorological stations of the MeteoGalicia real-time observational network, captured and stored every ten minutes, are considered. In this kind of record, the lack of data and/or the presence of wrong values adversely affects any time series study. Consequently, when this occurs, a data imputation process must be performed in order to replace missing data with estimated values. This paper aims to evaluate the multivariate imputation of ten-minute scale data by means of the chained equations method (MICE). This method allows the network itself to impute the missing or wrong data of a solar radiation sensor, by using either all or just a group of the measurements of the remaining sensors. Very good results have been obtained with the MICE method in comparison with other methods employed in this field such as Inverse Distance Weighting (IDW) and Multiple Linear Regression (MLR). The average RMSE value of the predictions for the MICE algorithm was 13.37% while that for the MLR it was 28.19%, and 31.68% for the IDW.
doi_str_mv 10.3390/s141120382
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5b22b9fa913e485598a54a36e3a88a56</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5b22b9fa913e485598a54a36e3a88a56</doaj_id><sourcerecordid>3786420861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c674t-e31c333a2f50c06ec7da67ea8a6e962d06dcf5f148d8022de0b94b49e20137c53</originalsourceid><addsrcrecordid>eNqNkk1rFTEUhoMotlY3_gAZcCPC1XxPshGk-FGouFG34UxycpvLzOSazAj-e9PeWls3usrh5OFJTvIS8pTRV0JY-royyRinwvB75JhJLjeGc3r_Vn1EHtW6o5QLIcxDcsSVUFpLeUy-fUq1pnnbBVigS9N-XWBJee5y7GoeoXQFQjq0rpB1Dli6kGLEgvPSwTLlur_Aknzn8xzSJVofkwcRxopPrtcT8vX9uy-nHzfnnz-cnb4933jdy2WDgvl2JeBRUU81-j6A7hEMaLSaB6qDjyoyaYKhnAekg5WDtMgpE71X4oScHbwhw87tS5qg_HQZkrtq5LJ1UJbkR3Rq4HywESwTKI1S1oCSIDQKMK3UzfXm4Nqvw4TBt-kKjHekd3fmdOG2-YeTvLfS2CZ4cS0o-fuKdXFTqh7HEWbMa3WsZ40S1vb_RrWSujf8v1BmBbNcyoY-_wvd5bXM7QPa2VRzI5hijXp5oHzJtRaMNyMy6i4D5f4EqsHPbj_KDfo7QeIXzmHFAQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1706283151</pqid></control><display><type>article</type><title>Missing data imputation of solar radiation data under different atmospheric conditions</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Turrado, Concepción Crespo ; López, María Del Carmen Meizoso ; Lasheras, Fernando Sánchez ; Gómez, Benigno Antonio Rodríguez ; Rollé, José Luis Calvo ; Juez, Francisco Javier de Cos</creator><creatorcontrib>Turrado, Concepción Crespo ; López, María Del Carmen Meizoso ; Lasheras, Fernando Sánchez ; Gómez, Benigno Antonio Rodríguez ; Rollé, José Luis Calvo ; Juez, Francisco Javier de Cos</creatorcontrib><description>Global solar broadband irradiance on a planar surface is measured at weather stations by pyranometers. In the case of the present research, solar radiation values from nine meteorological stations of the MeteoGalicia real-time observational network, captured and stored every ten minutes, are considered. In this kind of record, the lack of data and/or the presence of wrong values adversely affects any time series study. Consequently, when this occurs, a data imputation process must be performed in order to replace missing data with estimated values. This paper aims to evaluate the multivariate imputation of ten-minute scale data by means of the chained equations method (MICE). This method allows the network itself to impute the missing or wrong data of a solar radiation sensor, by using either all or just a group of the measurements of the remaining sensors. Very good results have been obtained with the MICE method in comparison with other methods employed in this field such as Inverse Distance Weighting (IDW) and Multiple Linear Regression (MLR). The average RMSE value of the predictions for the MICE algorithm was 13.37% while that for the MLR it was 28.19%, and 31.68% for the IDW.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s141120382</identifier><identifier>PMID: 25356644</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aerosols ; Algorithms ; Atmosphere - analysis ; Atmospherics ; Computer Simulation ; Data Interpretation, Statistical ; Mathematical analysis ; Mice ; Missing data ; missing data imputation ; Models, Statistical ; multiple linear regression ; Multivariate Analysis ; multivariate imputation by chained equations (MICE) ; Networks ; pyranometer ; Radiation ; Radiation Dosage ; Radiometry - methods ; Regression analysis ; Reproducibility of Results ; Sample Size ; Sensitivity and Specificity ; Sensors ; Solar energy ; Solar Energy - statistics &amp; numerical data ; Solar radiation ; Time series ; Variables</subject><ispartof>Sensors (Basel, Switzerland), 2014-10, Vol.14 (11), p.20382-20399</ispartof><rights>Copyright MDPI AG 2014</rights><rights>2014 by the authors; licensee MDPI, Basel, Switzerland. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c674t-e31c333a2f50c06ec7da67ea8a6e962d06dcf5f148d8022de0b94b49e20137c53</citedby><cites>FETCH-LOGICAL-c674t-e31c333a2f50c06ec7da67ea8a6e962d06dcf5f148d8022de0b94b49e20137c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1706283151/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1706283151?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25356644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turrado, Concepción Crespo</creatorcontrib><creatorcontrib>López, María Del Carmen Meizoso</creatorcontrib><creatorcontrib>Lasheras, Fernando Sánchez</creatorcontrib><creatorcontrib>Gómez, Benigno Antonio Rodríguez</creatorcontrib><creatorcontrib>Rollé, José Luis Calvo</creatorcontrib><creatorcontrib>Juez, Francisco Javier de Cos</creatorcontrib><title>Missing data imputation of solar radiation data under different atmospheric conditions</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Global solar broadband irradiance on a planar surface is measured at weather stations by pyranometers. In the case of the present research, solar radiation values from nine meteorological stations of the MeteoGalicia real-time observational network, captured and stored every ten minutes, are considered. In this kind of record, the lack of data and/or the presence of wrong values adversely affects any time series study. Consequently, when this occurs, a data imputation process must be performed in order to replace missing data with estimated values. This paper aims to evaluate the multivariate imputation of ten-minute scale data by means of the chained equations method (MICE). This method allows the network itself to impute the missing or wrong data of a solar radiation sensor, by using either all or just a group of the measurements of the remaining sensors. Very good results have been obtained with the MICE method in comparison with other methods employed in this field such as Inverse Distance Weighting (IDW) and Multiple Linear Regression (MLR). The average RMSE value of the predictions for the MICE algorithm was 13.37% while that for the MLR it was 28.19%, and 31.68% for the IDW.</description><subject>Aerosols</subject><subject>Algorithms</subject><subject>Atmosphere - analysis</subject><subject>Atmospherics</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Mathematical analysis</subject><subject>Mice</subject><subject>Missing data</subject><subject>missing data imputation</subject><subject>Models, Statistical</subject><subject>multiple linear regression</subject><subject>Multivariate Analysis</subject><subject>multivariate imputation by chained equations (MICE)</subject><subject>Networks</subject><subject>pyranometer</subject><subject>Radiation</subject><subject>Radiation Dosage</subject><subject>Radiometry - methods</subject><subject>Regression analysis</subject><subject>Reproducibility of Results</subject><subject>Sample Size</subject><subject>Sensitivity and Specificity</subject><subject>Sensors</subject><subject>Solar energy</subject><subject>Solar Energy - statistics &amp; numerical data</subject><subject>Solar radiation</subject><subject>Time series</subject><subject>Variables</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1rFTEUhoMotlY3_gAZcCPC1XxPshGk-FGouFG34UxycpvLzOSazAj-e9PeWls3usrh5OFJTvIS8pTRV0JY-royyRinwvB75JhJLjeGc3r_Vn1EHtW6o5QLIcxDcsSVUFpLeUy-fUq1pnnbBVigS9N-XWBJee5y7GoeoXQFQjq0rpB1Dli6kGLEgvPSwTLlur_Aknzn8xzSJVofkwcRxopPrtcT8vX9uy-nHzfnnz-cnb4933jdy2WDgvl2JeBRUU81-j6A7hEMaLSaB6qDjyoyaYKhnAekg5WDtMgpE71X4oScHbwhw87tS5qg_HQZkrtq5LJ1UJbkR3Rq4HywESwTKI1S1oCSIDQKMK3UzfXm4Nqvw4TBt-kKjHekd3fmdOG2-YeTvLfS2CZ4cS0o-fuKdXFTqh7HEWbMa3WsZ40S1vb_RrWSujf8v1BmBbNcyoY-_wvd5bXM7QPa2VRzI5hijXp5oHzJtRaMNyMy6i4D5f4EqsHPbj_KDfo7QeIXzmHFAQ</recordid><startdate>20141029</startdate><enddate>20141029</enddate><creator>Turrado, Concepción Crespo</creator><creator>López, María Del Carmen Meizoso</creator><creator>Lasheras, Fernando Sánchez</creator><creator>Gómez, Benigno Antonio Rodríguez</creator><creator>Rollé, José Luis Calvo</creator><creator>Juez, Francisco Javier de Cos</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7TG</scope><scope>KL.</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141029</creationdate><title>Missing data imputation of solar radiation data under different atmospheric conditions</title><author>Turrado, Concepción Crespo ; López, María Del Carmen Meizoso ; Lasheras, Fernando Sánchez ; Gómez, Benigno Antonio Rodríguez ; Rollé, José Luis Calvo ; Juez, Francisco Javier de Cos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c674t-e31c333a2f50c06ec7da67ea8a6e962d06dcf5f148d8022de0b94b49e20137c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerosols</topic><topic>Algorithms</topic><topic>Atmosphere - analysis</topic><topic>Atmospherics</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Mathematical analysis</topic><topic>Mice</topic><topic>Missing data</topic><topic>missing data imputation</topic><topic>Models, Statistical</topic><topic>multiple linear regression</topic><topic>Multivariate Analysis</topic><topic>multivariate imputation by chained equations (MICE)</topic><topic>Networks</topic><topic>pyranometer</topic><topic>Radiation</topic><topic>Radiation Dosage</topic><topic>Radiometry - methods</topic><topic>Regression analysis</topic><topic>Reproducibility of Results</topic><topic>Sample Size</topic><topic>Sensitivity and Specificity</topic><topic>Sensors</topic><topic>Solar energy</topic><topic>Solar Energy - statistics &amp; numerical data</topic><topic>Solar radiation</topic><topic>Time series</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turrado, Concepción Crespo</creatorcontrib><creatorcontrib>López, María Del Carmen Meizoso</creatorcontrib><creatorcontrib>Lasheras, Fernando Sánchez</creatorcontrib><creatorcontrib>Gómez, Benigno Antonio Rodríguez</creatorcontrib><creatorcontrib>Rollé, José Luis Calvo</creatorcontrib><creatorcontrib>Juez, Francisco Javier de Cos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turrado, Concepción Crespo</au><au>López, María Del Carmen Meizoso</au><au>Lasheras, Fernando Sánchez</au><au>Gómez, Benigno Antonio Rodríguez</au><au>Rollé, José Luis Calvo</au><au>Juez, Francisco Javier de Cos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Missing data imputation of solar radiation data under different atmospheric conditions</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2014-10-29</date><risdate>2014</risdate><volume>14</volume><issue>11</issue><spage>20382</spage><epage>20399</epage><pages>20382-20399</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Global solar broadband irradiance on a planar surface is measured at weather stations by pyranometers. In the case of the present research, solar radiation values from nine meteorological stations of the MeteoGalicia real-time observational network, captured and stored every ten minutes, are considered. In this kind of record, the lack of data and/or the presence of wrong values adversely affects any time series study. Consequently, when this occurs, a data imputation process must be performed in order to replace missing data with estimated values. This paper aims to evaluate the multivariate imputation of ten-minute scale data by means of the chained equations method (MICE). This method allows the network itself to impute the missing or wrong data of a solar radiation sensor, by using either all or just a group of the measurements of the remaining sensors. Very good results have been obtained with the MICE method in comparison with other methods employed in this field such as Inverse Distance Weighting (IDW) and Multiple Linear Regression (MLR). The average RMSE value of the predictions for the MICE algorithm was 13.37% while that for the MLR it was 28.19%, and 31.68% for the IDW.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>25356644</pmid><doi>10.3390/s141120382</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2014-10, Vol.14 (11), p.20382-20399
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5b22b9fa913e485598a54a36e3a88a56
source Publicly Available Content Database; PubMed Central
subjects Aerosols
Algorithms
Atmosphere - analysis
Atmospherics
Computer Simulation
Data Interpretation, Statistical
Mathematical analysis
Mice
Missing data
missing data imputation
Models, Statistical
multiple linear regression
Multivariate Analysis
multivariate imputation by chained equations (MICE)
Networks
pyranometer
Radiation
Radiation Dosage
Radiometry - methods
Regression analysis
Reproducibility of Results
Sample Size
Sensitivity and Specificity
Sensors
Solar energy
Solar Energy - statistics & numerical data
Solar radiation
Time series
Variables
title Missing data imputation of solar radiation data under different atmospheric conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Missing%20data%20imputation%20of%20solar%20radiation%20data%20under%20different%20atmospheric%20conditions&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Turrado,%20Concepci%C3%B3n%20Crespo&rft.date=2014-10-29&rft.volume=14&rft.issue=11&rft.spage=20382&rft.epage=20399&rft.pages=20382-20399&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s141120382&rft_dat=%3Cproquest_doaj_%3E3786420861%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c674t-e31c333a2f50c06ec7da67ea8a6e962d06dcf5f148d8022de0b94b49e20137c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1706283151&rft_id=info:pmid/25356644&rfr_iscdi=true