Loading…
Tunable quantum interferometer for correlated moiré electrons
Magic-angle twisted bilayer graphene can host a variety of gate-tunable correlated states – including superconducting and correlated insulator states. Recently, junction-based superconducting moiré devices have been introduced, enabling the study of the charge, spin and orbital nature of superconduc...
Saved in:
Published in: | Nature communications 2024-01, Vol.15 (1), p.390-390, Article 390 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c541t-f9f66528c0add089330db5a73187e99df5cfc780134d40e3ee058492d4b2cd7d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c541t-f9f66528c0add089330db5a73187e99df5cfc780134d40e3ee058492d4b2cd7d3 |
container_end_page | 390 |
container_issue | 1 |
container_start_page | 390 |
container_title | Nature communications |
container_volume | 15 |
creator | Iwakiri, Shuichi Mestre-Torà, Alexandra Portolés, Elías Visscher, Marieke Perego, Marta Zheng, Giulia Taniguchi, Takashi Watanabe, Kenji Sigrist, Manfred Ihn, Thomas Ensslin, Klaus |
description | Magic-angle twisted bilayer graphene can host a variety of gate-tunable correlated states – including superconducting and correlated insulator states. Recently, junction-based superconducting moiré devices have been introduced, enabling the study of the charge, spin and orbital nature of superconductivity, as well as the coherence of moiré electrons in magic-angle twisted bilayer graphene. Complementary fundamental coherence effects—in particular, the Little–Parks effect in a superconducting ring and the Aharonov–Bohm effect in a normally conducting ring – have not yet been reported in moiré devices. Here, we observe both phenomena in a single gate-defined ring device, where we can embed a superconducting or normally conducting ring in a correlated or band insulator. The Little–Parks effect is seen in the superconducting phase diagram as a function of density and magnetic field, confirming the effective charge of 2
e
. We also find that the coherence length of conducting moiré electrons exceeds several microns at 50 mK. In addition, we identify a regime characterized by
h
/
e
-periodic oscillations but with superconductor-like nonlinear transport.
Gate-defined superconducting moiré devices offer high tunability for probing the nature of superconducting and correlated insulating states. Here, the authors report the Little–Parks and Aharonov–Bohm effects in a single gate-defined magic-angle twisted bilayer graphene device. |
doi_str_mv | 10.1038/s41467-023-44671-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5b22e713bce8485bbc1e53010f36848c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5b22e713bce8485bbc1e53010f36848c</doaj_id><sourcerecordid>2912141821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-f9f66528c0add089330db5a73187e99df5cfc780134d40e3ee058492d4b2cd7d3</originalsourceid><addsrcrecordid>eNp9kctu1jAQhS0EolXpC7BAkdiwCXh8iZ0NCFUtVKrEpqwtxx7_5Fdit3aCxCPxHLwYblNKywJvfDRz5vPlEPIS6FugXL8rAkSnWsp4K6qAVjwhh4wKaEEx_vSBPiDHpexpXbwHLcRzcsA19FIJdUjeX67RDhM216uNyzo3Y1wwB8xpxiqakHLjUs442QV9M6cx__rZ4IRuySmWF-RZsFPB47v9iHw9O708-dxefPl0fvLxonVSwNKGPnSdZNpR6z3VPefUD9IqDlph3_sgXXBKU-DCC4ockUoteubFwJxXnh-R843rk92bqzzONv8wyY7mtpDyzti8jG5CIwfGUAEfHGqh5TA4QMkp0MC7WnCV9WFjXa3DjN5hXLKdHkEfd-L4zezSdwNUqa7rVCW8uSPkdL1iWcw8FofTZCOmtRjWA6caGNXV-vof6z6tOda_unExEKAZVBfbXC6nUjKG-9sANTdxmy1uU-M2t3EbUYdePXzH_cifcKuBb4ZSW3GH-e_Z_8H-Bs9itcc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912141821</pqid></control><display><type>article</type><title>Tunable quantum interferometer for correlated moiré electrons</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Iwakiri, Shuichi ; Mestre-Torà, Alexandra ; Portolés, Elías ; Visscher, Marieke ; Perego, Marta ; Zheng, Giulia ; Taniguchi, Takashi ; Watanabe, Kenji ; Sigrist, Manfred ; Ihn, Thomas ; Ensslin, Klaus</creator><creatorcontrib>Iwakiri, Shuichi ; Mestre-Torà, Alexandra ; Portolés, Elías ; Visscher, Marieke ; Perego, Marta ; Zheng, Giulia ; Taniguchi, Takashi ; Watanabe, Kenji ; Sigrist, Manfred ; Ihn, Thomas ; Ensslin, Klaus</creatorcontrib><description>Magic-angle twisted bilayer graphene can host a variety of gate-tunable correlated states – including superconducting and correlated insulator states. Recently, junction-based superconducting moiré devices have been introduced, enabling the study of the charge, spin and orbital nature of superconductivity, as well as the coherence of moiré electrons in magic-angle twisted bilayer graphene. Complementary fundamental coherence effects—in particular, the Little–Parks effect in a superconducting ring and the Aharonov–Bohm effect in a normally conducting ring – have not yet been reported in moiré devices. Here, we observe both phenomena in a single gate-defined ring device, where we can embed a superconducting or normally conducting ring in a correlated or band insulator. The Little–Parks effect is seen in the superconducting phase diagram as a function of density and magnetic field, confirming the effective charge of 2
e
. We also find that the coherence length of conducting moiré electrons exceeds several microns at 50 mK. In addition, we identify a regime characterized by
h
/
e
-periodic oscillations but with superconductor-like nonlinear transport.
Gate-defined superconducting moiré devices offer high tunability for probing the nature of superconducting and correlated insulating states. Here, the authors report the Little–Parks and Aharonov–Bohm effects in a single gate-defined magic-angle twisted bilayer graphene device.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-44671-4</identifier><identifier>PMID: 38195747</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/1130/1064 ; 639/925/918/1052 ; Bilayers ; Coherence length ; Correlation ; Electrons ; Graphene ; Humanities and Social Sciences ; Magnetic fields ; multidisciplinary ; Oscillations ; Parks ; Parks & recreation areas ; Phase diagrams ; Science ; Science (multidisciplinary) ; Superconductivity</subject><ispartof>Nature communications, 2024-01, Vol.15 (1), p.390-390, Article 390</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-f9f66528c0add089330db5a73187e99df5cfc780134d40e3ee058492d4b2cd7d3</citedby><cites>FETCH-LOGICAL-c541t-f9f66528c0add089330db5a73187e99df5cfc780134d40e3ee058492d4b2cd7d3</cites><orcidid>0000-0001-7202-777X ; 0000-0001-7007-6949 ; 0000-0002-8627-5093 ; 0009-0000-1010-2922 ; 0000-0003-2668-8328 ; 0000-0002-5587-6953 ; 0000-0003-3503-4940 ; 0000-0002-1467-3105 ; 0000-0003-3701-8119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2912141821/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2912141821?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38195747$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iwakiri, Shuichi</creatorcontrib><creatorcontrib>Mestre-Torà, Alexandra</creatorcontrib><creatorcontrib>Portolés, Elías</creatorcontrib><creatorcontrib>Visscher, Marieke</creatorcontrib><creatorcontrib>Perego, Marta</creatorcontrib><creatorcontrib>Zheng, Giulia</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Sigrist, Manfred</creatorcontrib><creatorcontrib>Ihn, Thomas</creatorcontrib><creatorcontrib>Ensslin, Klaus</creatorcontrib><title>Tunable quantum interferometer for correlated moiré electrons</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Magic-angle twisted bilayer graphene can host a variety of gate-tunable correlated states – including superconducting and correlated insulator states. Recently, junction-based superconducting moiré devices have been introduced, enabling the study of the charge, spin and orbital nature of superconductivity, as well as the coherence of moiré electrons in magic-angle twisted bilayer graphene. Complementary fundamental coherence effects—in particular, the Little–Parks effect in a superconducting ring and the Aharonov–Bohm effect in a normally conducting ring – have not yet been reported in moiré devices. Here, we observe both phenomena in a single gate-defined ring device, where we can embed a superconducting or normally conducting ring in a correlated or band insulator. The Little–Parks effect is seen in the superconducting phase diagram as a function of density and magnetic field, confirming the effective charge of 2
e
. We also find that the coherence length of conducting moiré electrons exceeds several microns at 50 mK. In addition, we identify a regime characterized by
h
/
e
-periodic oscillations but with superconductor-like nonlinear transport.
Gate-defined superconducting moiré devices offer high tunability for probing the nature of superconducting and correlated insulating states. Here, the authors report the Little–Parks and Aharonov–Bohm effects in a single gate-defined magic-angle twisted bilayer graphene device.</description><subject>639/766/1130/1064</subject><subject>639/925/918/1052</subject><subject>Bilayers</subject><subject>Coherence length</subject><subject>Correlation</subject><subject>Electrons</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic fields</subject><subject>multidisciplinary</subject><subject>Oscillations</subject><subject>Parks</subject><subject>Parks & recreation areas</subject><subject>Phase diagrams</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Superconductivity</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctu1jAQhS0EolXpC7BAkdiwCXh8iZ0NCFUtVKrEpqwtxx7_5Fdit3aCxCPxHLwYblNKywJvfDRz5vPlEPIS6FugXL8rAkSnWsp4K6qAVjwhh4wKaEEx_vSBPiDHpexpXbwHLcRzcsA19FIJdUjeX67RDhM216uNyzo3Y1wwB8xpxiqakHLjUs442QV9M6cx__rZ4IRuySmWF-RZsFPB47v9iHw9O708-dxefPl0fvLxonVSwNKGPnSdZNpR6z3VPefUD9IqDlph3_sgXXBKU-DCC4ockUoteubFwJxXnh-R843rk92bqzzONv8wyY7mtpDyzti8jG5CIwfGUAEfHGqh5TA4QMkp0MC7WnCV9WFjXa3DjN5hXLKdHkEfd-L4zezSdwNUqa7rVCW8uSPkdL1iWcw8FofTZCOmtRjWA6caGNXV-vof6z6tOda_unExEKAZVBfbXC6nUjKG-9sANTdxmy1uU-M2t3EbUYdePXzH_cifcKuBb4ZSW3GH-e_Z_8H-Bs9itcc</recordid><startdate>20240109</startdate><enddate>20240109</enddate><creator>Iwakiri, Shuichi</creator><creator>Mestre-Torà, Alexandra</creator><creator>Portolés, Elías</creator><creator>Visscher, Marieke</creator><creator>Perego, Marta</creator><creator>Zheng, Giulia</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Sigrist, Manfred</creator><creator>Ihn, Thomas</creator><creator>Ensslin, Klaus</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7202-777X</orcidid><orcidid>https://orcid.org/0000-0001-7007-6949</orcidid><orcidid>https://orcid.org/0000-0002-8627-5093</orcidid><orcidid>https://orcid.org/0009-0000-1010-2922</orcidid><orcidid>https://orcid.org/0000-0003-2668-8328</orcidid><orcidid>https://orcid.org/0000-0002-5587-6953</orcidid><orcidid>https://orcid.org/0000-0003-3503-4940</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid></search><sort><creationdate>20240109</creationdate><title>Tunable quantum interferometer for correlated moiré electrons</title><author>Iwakiri, Shuichi ; Mestre-Torà, Alexandra ; Portolés, Elías ; Visscher, Marieke ; Perego, Marta ; Zheng, Giulia ; Taniguchi, Takashi ; Watanabe, Kenji ; Sigrist, Manfred ; Ihn, Thomas ; Ensslin, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-f9f66528c0add089330db5a73187e99df5cfc780134d40e3ee058492d4b2cd7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/766/1130/1064</topic><topic>639/925/918/1052</topic><topic>Bilayers</topic><topic>Coherence length</topic><topic>Correlation</topic><topic>Electrons</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic fields</topic><topic>multidisciplinary</topic><topic>Oscillations</topic><topic>Parks</topic><topic>Parks & recreation areas</topic><topic>Phase diagrams</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwakiri, Shuichi</creatorcontrib><creatorcontrib>Mestre-Torà, Alexandra</creatorcontrib><creatorcontrib>Portolés, Elías</creatorcontrib><creatorcontrib>Visscher, Marieke</creatorcontrib><creatorcontrib>Perego, Marta</creatorcontrib><creatorcontrib>Zheng, Giulia</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Sigrist, Manfred</creatorcontrib><creatorcontrib>Ihn, Thomas</creatorcontrib><creatorcontrib>Ensslin, Klaus</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwakiri, Shuichi</au><au>Mestre-Torà, Alexandra</au><au>Portolés, Elías</au><au>Visscher, Marieke</au><au>Perego, Marta</au><au>Zheng, Giulia</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Sigrist, Manfred</au><au>Ihn, Thomas</au><au>Ensslin, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable quantum interferometer for correlated moiré electrons</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-01-09</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>390</spage><epage>390</epage><pages>390-390</pages><artnum>390</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Magic-angle twisted bilayer graphene can host a variety of gate-tunable correlated states – including superconducting and correlated insulator states. Recently, junction-based superconducting moiré devices have been introduced, enabling the study of the charge, spin and orbital nature of superconductivity, as well as the coherence of moiré electrons in magic-angle twisted bilayer graphene. Complementary fundamental coherence effects—in particular, the Little–Parks effect in a superconducting ring and the Aharonov–Bohm effect in a normally conducting ring – have not yet been reported in moiré devices. Here, we observe both phenomena in a single gate-defined ring device, where we can embed a superconducting or normally conducting ring in a correlated or band insulator. The Little–Parks effect is seen in the superconducting phase diagram as a function of density and magnetic field, confirming the effective charge of 2
e
. We also find that the coherence length of conducting moiré electrons exceeds several microns at 50 mK. In addition, we identify a regime characterized by
h
/
e
-periodic oscillations but with superconductor-like nonlinear transport.
Gate-defined superconducting moiré devices offer high tunability for probing the nature of superconducting and correlated insulating states. Here, the authors report the Little–Parks and Aharonov–Bohm effects in a single gate-defined magic-angle twisted bilayer graphene device.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38195747</pmid><doi>10.1038/s41467-023-44671-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7202-777X</orcidid><orcidid>https://orcid.org/0000-0001-7007-6949</orcidid><orcidid>https://orcid.org/0000-0002-8627-5093</orcidid><orcidid>https://orcid.org/0009-0000-1010-2922</orcidid><orcidid>https://orcid.org/0000-0003-2668-8328</orcidid><orcidid>https://orcid.org/0000-0002-5587-6953</orcidid><orcidid>https://orcid.org/0000-0003-3503-4940</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-01, Vol.15 (1), p.390-390, Article 390 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5b22e713bce8485bbc1e53010f36848c |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/766/1130/1064 639/925/918/1052 Bilayers Coherence length Correlation Electrons Graphene Humanities and Social Sciences Magnetic fields multidisciplinary Oscillations Parks Parks & recreation areas Phase diagrams Science Science (multidisciplinary) Superconductivity |
title | Tunable quantum interferometer for correlated moiré electrons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20quantum%20interferometer%20for%20correlated%20moir%C3%A9%20electrons&rft.jtitle=Nature%20communications&rft.au=Iwakiri,%20Shuichi&rft.date=2024-01-09&rft.volume=15&rft.issue=1&rft.spage=390&rft.epage=390&rft.pages=390-390&rft.artnum=390&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-44671-4&rft_dat=%3Cproquest_doaj_%3E2912141821%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-f9f66528c0add089330db5a73187e99df5cfc780134d40e3ee058492d4b2cd7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2912141821&rft_id=info:pmid/38195747&rfr_iscdi=true |