Loading…

Molecular basis of ventricular arrhythmogenicity in a Pgc-1α deficient murine model

Mitochondrial dysfunction underlying metabolic disorders such as obesity and diabetes mellitus is strongly associated with cardiac arrhythmias. Murine Pgc-1α−/− hearts replicate disrupted mitochondrial function and model the associated pro-arrhythmic electrophysiological abnormalities. Quantitative...

Full description

Saved in:
Bibliographic Details
Published in:Molecular genetics and metabolism reports 2021-06, Vol.27, p.100753-100753, Article 100753
Main Authors: Saadeh, Khalil, Chadda, Karan R., Ahmad, Shiraz, Valli, Haseeb, Nanthakumar, Nakulan, Fazmin, Ibrahim T., Edling, Charlotte E., Huang, Christopher L.-H., Jeevaratnam, Kamalan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mitochondrial dysfunction underlying metabolic disorders such as obesity and diabetes mellitus is strongly associated with cardiac arrhythmias. Murine Pgc-1α−/− hearts replicate disrupted mitochondrial function and model the associated pro-arrhythmic electrophysiological abnormalities. Quantitative PCR, western blotting and histological analysis were used to investigate the molecular basis of the electrophysiological changes associated with mitochondrial dysfunction. qPCR analysis implicated downregulation of genes related to Na+-K+ ATPase activity (Atp1b1), surface Ca2+ entry (Cacna1c), action potential repolarisation (Kcnn1), autonomic function (Adra1d, Adcy4, Pde4d, Prkar2a), and morphological properties (Myh6, Tbx3) in murine Pgc-1α−/− ventricles. Western blotting revealed reduced NaV1.5 but normal Cx43 expression. Histological analysis revealed increased tissue fibrosis in the Pgc-1α−/− ventricles. These present findings identify altered transcription amongst a strategically selected set of genes established as encoding proteins involved in cardiac electrophysiological activation and therefore potentially involved in alterations in ventricular activation and Ca2+ homeostasis in arrhythmic substrate associated with Pgc-1α deficiency. They complement and complete previous studies examining such expression characteristics in the atria and ventricles of Pgc-1 deficient murine hearts.
ISSN:2214-4269
2214-4269
DOI:10.1016/j.ymgmr.2021.100753