Loading…

Long-Term Marine Environment Exposure Effect on Butt-Welded Shipbuilding Steel

Extreme environments, such as marine environments, have negative impacts on welded steel structures, causing corrosion, reduced structural integrity and, consequently, failures. That is why it is necessary to perform an experimental research sea exposure effect on such structures and materials. Rese...

Full description

Saved in:
Bibliographic Details
Published in:Journal of marine science and engineering 2021-05, Vol.9 (5), p.491
Main Authors: Vukelic, Goran, Vizentin, Goran, Brnic, Josip, Brcic, Marino, Sedmak, Florian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Extreme environments, such as marine environments, have negative impacts on welded steel structures, causing corrosion, reduced structural integrity and, consequently, failures. That is why it is necessary to perform an experimental research sea exposure effect on such structures and materials. Research presented in this paper deals with the mechanical behavior of butt-welded specimens made of AH36 shipbuilding steel when they are exposed to a natural marine environment (water, seawater, sea splash) for prolonged periods (3, 6, 12, 24, and 36 months). The usual approach to such research is to perform accelerated tests in a simulated laboratory environment. Here, relative mass change due to corrosion over time is given along with calculated corrosion rates. Corroded surfaces of specimens were inspected using optical and scanning electron microscopy and comparison, based on the numbers and dimensions of the corrosion pits (diameter and depth) in the observed area. As a result, it can be concluded that exposure between 3 and 6 months shows significant influence on mass loss of specimens. Further, sea splash generally has the most negative impact on corrosion rate due to the combined chemical and mechanical degradation of material. Pit density is the highest at the base metal area of the specimen. The diameters of the corrosion pits grow over the time of exposure as the pits coalesce and join. Pit depths are generally greatest in the heat affected zone area of the specimen.
ISSN:2077-1312
2077-1312
DOI:10.3390/jmse9050491