Loading…
Geospatial analysis of September, 2019 floods in the lower gangetic plains of Bihar using multi-temporal satellites and river gauge data
During late September, 2019 Bihar was struggling with severe flooding problem, which otherwise is marked as a period of flood recession due to withdrawal of south-east monsoons. The present study assess the flood situation using Sentinel-1 SAR images and complements the understanding about the flood...
Saved in:
Published in: | Geomatics, natural hazards and risk natural hazards and risk, 2021-01, Vol.12 (1), p.84-102 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | During late September, 2019 Bihar was struggling with severe flooding problem, which otherwise is marked as a period of flood recession due to withdrawal of south-east monsoons. The present study assess the flood situation using Sentinel-1 SAR images and complements the understanding about the flood event using long term (2000-18) multi-temporal space based flood sensitive proxy indicators like precipitation (GPM), soil moisture (AMSR-2), vegetation condition (MODIS) together with ground based river gauge (CWC) data. The study reveals that in 2019 during the 39
th
week of the year (late September) the central and eastern parts of Bihar witnessed heavy precipitation (176 percent higher than average), leading to enhanced soil moisture build up (19 percent higher than average) and consequently triggering severe flooding. River Ganga was observed to be flowing above danger level for almost two weeks. Due to the prolonged submergence by floodwaters a significant drop was observed in the NDVI and EVI values of about 13.7 and 11.1 percent respectively from the normal. About 8.36 lakh ha area was observed to be inundated, impacting about 9.26 million population. Patna followed by Bhagalpur were the two worst affected districts with almost 30% and 36% of districts geographical area being flooded. |
---|---|
ISSN: | 1947-5705 1947-5713 |
DOI: | 10.1080/19475705.2020.1861113 |