Loading…
Radiographic Findings Associated With Mild Hip Dysplasia in 3869 Patients Using a Deep Learning Measurement Tool
Hip dysplasia is considered one of the leading etiologies contributing to hip degeneration and the eventual need for total hip arthroplasty (THA). We validated a deep learning (DL) algorithm to measure angles relevant to hip dysplasia and applied this algorithm to determine the prevalence of dysplas...
Saved in:
Published in: | Arthroplasty today 2024-08, Vol.28, p.101398, Article 101398 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hip dysplasia is considered one of the leading etiologies contributing to hip degeneration and the eventual need for total hip arthroplasty (THA). We validated a deep learning (DL) algorithm to measure angles relevant to hip dysplasia and applied this algorithm to determine the prevalence of dysplasia in a large population based on incremental radiographic cutoffs.
Patients from the Osteoarthritis Initiative with anteroposterior pelvis radiographs and without previous THAs were included. A DL algorithm automated 3 angles associated with hip dysplasia: modified lateral center-edge angle (LCEA), Tönnis angle, and modified Sharp angle. The algorithm was validated against manual measurements, and all angles were measured in a cohort of 3869 patients (61.2 ± 9.2 years, 57.1% female). The percentile distributions and prevalence of dysplastic hips were analyzed using each angle.
The algorithm had no significant difference (P > .05) in measurements (paired difference: 0.3°-0.7°) against readers and had excellent agreement for dysplasia classification (kappa = 0.78-0.88). In 140 minutes, 23,214 measurements were automated for 3869 patients. LCEA and Sharp angles were higher and the Tönnis angle was lower (P < .01) in females. The dysplastic hip prevalence varied from 2.5% to 20% utilizing the following cutoffs: 17.3°-25.5° (LCEA), 9.4°-15.6° (Tönnis), and 41.3°-45.9° (Sharp).
A DL algorithm was developed to measure and classify hips with mild hip dysplasia. The reported prevalence of dysplasia in a large patient cohort was dependent on both the measurement and threshold, with 12.4% of patients having dysplasia radiographic indices indicative of higher THA risk. |
---|---|
ISSN: | 2352-3441 2352-3441 |
DOI: | 10.1016/j.artd.2024.101398 |